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ABSTRACT

A procedure for the numerical solution of the complete, iso~-
thermal elastohydrodynamic lubrication problem for point contacts
is given. This procedure calls for the simultaneous solution of che
elasticity and Reynolds equations. By using this theory the influ-
ence of the ellipticity parameter and the dimensionless speed, load,
and material parameters on the minimum and central film thicknesses
was investigated. Thirty-four different cases were used in obtaining
fully flooded minimum- and central-film-thickness formulas. Lubri-
cant starvation was zlso studied. From the results it was possible
to express the minimum film thickness for a starved condition in
terms of the minimum film thickness for a fully flooded condition,
the speed parameter, and the inlet distance. Fifteen additional
cases plus three fully flooded cases were used in obtaining this
fermula. Contour plots of pressure and film thickness in and around

the contact have been presented for both fully flooded and starved

lubrication conditions.
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CHAPTER I

INTRODUCTION

1.1 Statement of Problem

In many contacts between machine elements, forces are trans-
mitted through thin, but continuous, fluid films. One of the basic
problems is to accurately describe the fluid film thickness between
these machine elements. The provision of an adequate fluid film
thickness will reduce wear and increase fatigue life and therefore
avoid early damage of the machine elements. These fluid films as re-
lated to hydrodynamic lubrication in journal and thrust bearings have
been well understood for some time, and experimental work confirms
the theory. In the early 1900's it was recognized by Martin (1916)
that many loaded contacts of low geometrical conformity, commonly re-
ferred to as nonconforming contacts, such as gears and rolling-
contact bearings, behaved as though they were hydrodynamically lu-
bricated. As opposed to the journal and thrust bearing counterpart,
the original hydrodynamic lubrication theory of gears and rolling-
contact bearings differed substantially from experimental findings.
Only in recent years has the consideration of elastic deformation of
contacts been coupled to hydrodynamics to yield a closer agreement
of theory with experiments.

Elastohydrodynamic lubrication (EHL) then deals with the lubri-
cation of elastic contacts. The analysis requires the simultaneous
solution of the elasticity and Reynolds equations. The EHL theory
differs from conventional hydrodynamic theory in the following way:

(1) In defining the film thickness Iin EHL theory, elastic de-
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formation of the contact is considered.

(2) The viscosity is no longer independent of pressure, as is
assumed in conventional hydrodynamic theory.

(3) Hydrodynamic lubrication is characterized by surfaces that
are conforming, but elastohydrodynamic lubrication is usually char-
acterized by nonconforming surfaces.

Because of this last point the load in hydrodynamic lubrication is
usually carried over a relatively large area. Also, typical maximum
pressures for elastohydrodynamic lubrication are of the order of
1.4x109 N/m2 (200 000 lb/in.z), and the usual hydrodynamic pressures
generated in journal bearings are of the order of only 7x106 N/m2
(1000 lb/in.z).

1.2 Historical Developments

When two solids are in contact under zero load condition, one
of two types of contact is experienced:
(1) Point contact, in which two solids touch at a single point,
as in ball bearings
(2) Line contact, in which two solids touch along a straight or
curved line, as in roller bearings
After a load is applied, the point expands to an ellipse and the '
line to a rectangle. Although we are concerned with loaded contacts,
it is convenient to distinguish between these situations by referring
to them as being either point or line contact. Lubricant removal o
the side of the contact is ignored in the line-contact problem and
the problem becomes two dimensional. This is a considerable simpli-
fication from the point-contact, three-dimensional problem.
1.2.1 Line Contact
One of the earliest solutions of the jubrication of a line con-
tact was presented in 1916 by Martin. By assuming rigid solids and

an incompressible constant-viscosity lubricant he was able to deter-




mine a lubricating film thickness. Figure 1.1(a) shows typical pres-
sure and film thickness curves from Martin's solution as well as his
formula for minimum film thickness. Martin's formula greatly under-
estimates the film thickness; however, it was a useful beginning to
the theoretical study of elastohydrodynamic lubrication of line
contacts.

Some 30 years transpired before any significant accomplishments
were made in solving the EHL line-contact protlem. Grubin (1949)
obtained the first satisfactory solution to this problem by taking
account of elastic distortion and viscosity-pressure effects. 1In
Grubin's analysis it was assumed that the shape of the elastically
deformed solids in a highly loaded lubricated contact is the same as
the shape produced in a dry Hertzian contact. A pressure distribu-
tion in a Hertzian contact is shown in figure 1.1(b). This stipula-
tion (assuming the shape of the elastically deformed solids is the
same as is produced in a Hertzian contact) facilitated the solution
of the Reynolds equation in the inlet region of the contact and en-
abled the separation of the solids in the central region of the con-
tact to be determined with commendable accuracy. Grubin's approach
produced an excellent account of the physical mechanism of the lubri-
cation process in highly loaded EHL line contacts, and it marked a
very important development in the history of elastohydrodynamic
lubrication.

Dowson and Higginson (1961) produced an empirical formula for
isothermal EHL line contacts. This formula shows the effect of
speed, load, and material properties on minimum film thickness and
is based on their earlier theoretical solutions (1959). Figure
I.1(c) gives the pressure and film thickness for an elastohydrody-

namic lubricated line contact. Also shown in figure 1.1(c) is the

EHL line-contact minimum film thickness obtained from the resul.s of
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Dowson and Higginson (1961). In the Dowson-Higginson theory (1959)

for EHL line contacts, a new approach of introducing a solution of
the inverse hydrodynamic lubrication problem was presented. Nor-
mally a solution of the Reynolds equation calls for the determina-
tion of a pressure distribution corresponding to a given film thick-
ness. In the inverse problem the film shape responsible for the
generation of a given pressure distribution is determined. 1In the
procedure adopted by Dowson and Higginson (1959) the computed film
shape was compared with the shape of the elastically deformed solids,
and the pressure curve was then modified to improve the agreement
between the two shapes. By using this approach they were able to
obtain satisfactory solutions of the elastic and hydrodynamic equa-
tions after a small number of numerical iterations.

The Dowson-Higginson minimum-film-thickness formula for EHL
line contacts agrees quite well with experimental observations. 1In
particular, Sibley and Orcutt's (1961) X-ray method, Christensen's
(1964) slide displacement method, and Dyson, Naylor, and Wilson's
(1966) capacity method all give good agreement with the Dowson-
Higginson formula.

1.2.2 Point Contact

Most of the work on elastohydrodynamic lubrication has dealt
with line contacts. Furthermore, the majority of the work done on
the EHL point-contact problem has been experimental. Two good ex-
amples of this experimental work are Cameron and Gohar's (1966) ob-
servation of film thickness between a steel sphere and a glass plate
using interference rings and Archard and Kirk's (1961) observation
of film thi~kness between two crossed cylinders with the same diam-
eter makin: .an angle of 90° in a simulated point contact.

The first step toward a theoretical solution of the EHL point-

contact problem was presented by Archard and Cowking (1966). They




adopted an approach similar to that used by Grubin (1949) for line-
contact conditions. The Hertzian contact zone was assumed to form

a parallel film region, and the generation of high pressure in the

approaches to the Hertzian zone was considered.

Cheng (1970) also used a Grubin type of approach in determin-
ing a film thickness formula for the EHL of point contacts. He
evaluated the deformation by using the Hertz equation and then ap-
plying the Reynolds equation to this geometry,

Recently an interesting numerical solution of the EHL point-
contact problem for a sphere near a plane was put forth by Ranger,
et al. (1975). This solution is presented in dimensional terms, which
thereby limits its general usage. A puzzling feature of the Ranger,
et al. work is the fact that his resulting equation for the minimum
film thickness has a positive load exponent, which contradicts exper-
iments (e.g.,Cameron and Gohar's(1966) and Archard and Kirk (1961)).

1.3 Approach to the Problem

In the literature the EHL line-contact problem is completely
solved, with theory and experiment agreeing well with each other.
For the EHL point-contact problem quite a bit of experimental work
has been done, but the theoretical solution to the complete isother-
mal elastohydrodynamic lubrication problem for point contacts has
not emerged. The reason for this is the extreme difficulty of the
numerical coupling of the elasticity and Reynolds equations and the
vest increase in computing involved in a transfer from line- to
point-contact conditicns. The work presented in this dissertation
is an attempt to solve this problem. A brief description of the ap-
proach to the problem follows.

The radii of curvature of the contacting solids are used to de-

fine the ratio of the semimajor and semiminor axes of the contact

ellipse. From this ratio and the normal applied load, the semimajor




and semiminor axes of the contact ellipse are determined. 1In the

elasticity analysis the computing zone is divided into equal rec-
tangular areas, and a uniform pressure is applied over each area.
Elasticity studies are performed to determine how finely the semi-
major and semiminor axes need to be divided to achieve a given ac-
curacy and how far from the center of the contact deformation be-
comes insignificant compared with the separation of the solids. ! ;
These equations were investigated for light and heavy loads and

for geometries ranging from a ball on a plate to a line-contact

configuration. The answers to these questions determined what the
computing zone should be in and around the contact ellipse.

In the numerical analysis of the Reynolds equation a "phi"

(¢) substitution is used to aid the relaxation process, where ¢

is equal to the pressure times the film thickness to the 3/2 power.
The pressure-viscosity analysis of Roelands (1966) is used. The
numerical coupling of the elasticity and Reynolds equations results
in a converged solution for the pressure profile. This pressure
profile 1s then integrated over the computing zone to give the value
of the corresponding normal applied load. This load is then com-
pared with the input load, and corrections are made to the film
thickness until these two loads are in agreement.

The most important practical aspect of the EHL point-contact
theory is the determination of the minimum film thickness within the
contact. By using the variables resulting from the theory, the di-
mensionless minimum film thickness can be written as a function of
the dimensionless load, speed, material, and ellipticity paramecers.

The influence of these parameters on minimum film thickness was
investigated. The ellipticity parameter was varied from 1 (a ball

on a plate) to 8 (a configuration approaching a line contact). The

dimensionless speed parameter was varied over a range of nearly two

]




orders of magnitude. The dimensionless load parameter was varied
over a range of one order of magnitude. Solid materials of bronze,
steel, and siiicon nitride and lubricants of pa-affinic and naph-
thenic mineral oils were varied in obtaining the exponent in the
dimensionless material parameter. Thirty-four different cases were
used in obtaining the fully flooded minimum-film-thickness formula.
In addition to the minimum-film-thickness formula a central-film-
thickness formula was developed. Contour plots are also shown that
indicate in detail the pressure spike and the two side lobes in which
the minimum film thickness occurs. These theoretical solutions for
film thickness have all the essential features of the previously re-
ported experimental observations based upon optical interferometry.
The effect of lubricant starvation was also investigated. This
study of lubricant starvation was achieved simply by reducing the
inlet distance, which is the distance from the center of the contact
to the edge of the computing area. A fully flooded condition exists
when the dimensionless inlet distance ceases to influence in any
significant way the minimum film thickness. Starting from a fully
flooded condition and decreasing the inlet distance, the value at
which the minimum film thickness first starts to change is called
the fully flooded - starved boundarv. Simple expressions for the
fully flooded - starved boundary were obtained as a function of the
fully flooded central or minimum film thickness. Simple expressions
defining the central and minimum film thicknesses for a lubricant
starvation condition were also obtained., Fifteen different cases
from those presented in the tutly flooded results were used in ob-
taining these formulas. lFurthermore, the effects of lubricant
starvation are clearly shown in contour plots ot presy e and film

thickness.
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CHAPTER 2

GEOMETRY OF CONTACTING SOLIDS

2.1 Curvature Sum and Difference

Two solids having different radii of curvature in a pair of
principal planes (x and y) passing through the contact between _he
solids make contact at a single point under the condition of no ap-
plied lcad. Such a condition is called "point contact’ and is
shown in figuie 2.1, where the radii of curvature are lenoted by
r's. In the analysis that follows it was assumed that for convex
surtaces as shown in figure 2.1 rhe curvature is positive but that

for concave surfaces the curvature is negative.

The curvature sum and difference are defined as

L1 .1
= + R (2.1)
X y
1 1
= L, 9
r R(R R) (2.2)
X y
where
X AX By
Joe b R (2.4)
y Ay By
2.2 Geometric Separation of Ellipsoidal Solids

Figure 2.2 shows how the geometric separation between two ellip-
soidal solids can be made equivalent to that between a single ellip-
soidal solid near a planc. The geometric requirement {s that for any
values of x and y 1in figure 2.2(a) the geometric separation must

be equivalent to the separatfon at the same x and 'y shown in fig-

-
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ure 2.2(b). From figure 2.2(a) the mathemarical expression for the
separation of the two ellipsoidal solids can be written as

S=8, +S, +S, +8 (2.5)

Ax Bx Ay By
From figure 2.2(b) the mathematical expression for the separation of

a single ellipsocidal solid near a plane can be written as

S = Sx + Sy (2.6)

Therefore, for the two expressions to be equivalent, the following

must be true:

S =85, +5§ 2.7)

S =8, +S5 (2.8)

From figure 2.2(a-1) the following can be written:

2 2 _ 2
T, =X *(r, -5,) (2.9)

or

x" =5 x(2r -5,.) (2.10)

But for the probiem being considered, 2rAx >> SAX; so that equation
(2.10) can be rewritten as

2

" X
S, T (2.11)

This is the well-known parabolic approximation to the circular sec-
tion of the solid. Similarly, by making use of figure 2.2 the fol-

lowling can be written:

where 2r_ >> § (2.12)
S, &l where 2r, >> § (2.13)

2
SR A where 2r_, >> S (2.14)
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2

s % 2—’;- where 2R >> S (2.15)
X
2

Sy ~ g%— where 2Ry >> Sy (2.16)
y

Substituting equations (2.11) to (2.16) into equations (2.7) and (2.8)

gives
1 1 1
E—'=T-+r—' (2.17)
X Ax Bx .
1 1 1
R—='£_—+r—‘— (2.18)
y Ay By

But equations (2.17) and (2.18) are exactly equations (2.3) and (2.4),
respectively. Therefore the equivalency shown in figure 2.2 is sat-
isfied. Henceforth the geometry of an ellipsoidal solid near a plane
as shown in figure 2.2(b) will be used.

2.3 Ellipticity Parameter

When the ellipsoidal solid just touches the plane shown in fig-
ure 2.2(b), contact is made at a single point when no load is ap-~
plied. When a normal load is applied to the ellipsoidal solid, the
point expands to an ellipse with a as the semimajor axis and b
as the semiminor axis. It is assumed that the plane remains rigid
while the equivalent elastic ellipsoid is pressed against it. The
normal applied load lies along the axis that passes through the cen-
ter of the solid and through the point of contact and is perpendicu-

lar to the plane shown in figure 2.2(b). For the special case where

Rx = Ry’ the resulting contact is a circle rather than an ellipse.
The ellipticity parameter (k) is defined as
k=2 (2.19)
where
a semimajor axis of contact ellipse
b semiminor axis of contact ellipse
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Harris (1966) has shown that the ellipticity parameter can be written
to relate the curvature difference and tne elliptic integrals of the

first and second kind as

_ ¥F-8GQ + D
J(k) = ‘[ F1 -1 (2.20)

where

/2

-1/2
F= [1 - (l - %)sinztr] de (2.21)
k
1/z
L
L

0
/2
&= / - ( —~1§>sin2(p:| d¢ (2.22)
k
0

A one-point iteration method that has been used succ~ssfully in the

past by Hamrock and Anderson (1973) was used, where

kn+l = J(kn) (2.23)

The iteration process is continuved until kn+l

by less than lx10_7. Note that the ellipticity parameter is a func-

differs from kn

tion of the radii of curvature of the contacting solids only

k = f(rAx’er’rAy’rBy)

When the ellipticity parameter (k), the normal appiied load
(F), Poisson's ratio (v), and modulus of elasticity (E) of the con-
tacting solids are known, the semimajor axis of the contact ellipse

can be written as

6k2]”45’ 1/3
"o R
a = <—-'7;‘E“"> (2-24)
where
g = = > (2.25)
1-v 1 -v
A 8
E t
‘A B

By making use of equation (2.19) the semiminor axis of the contact
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ellipse can be written as

(2.26)

= [

Therefore, from the geometry of the contacting solids the ellipticity
parameter, as well as the semimajor and semiminor axes, has been de-
fined. These parameters form the foundation of the EHL point-contact

analysis.
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CHAPTER 3
NUMERICAL EVALUATION OF THE ELASTIC DEFORMATION OF
SOLIDS SUBJECTED TO A HERTZIAN CONTACT STRESS

Elastohydrodynamic lubrication is defined as the study of
situa;ions in which elastic deformation of the surrounding solids
plays a significant role in the hydrodynamic lubrication process.
This chapter is not concerned with the hydrodynamic lubrication
process, but only with deformation due to the pressure of one
elastic solid upon another.

Dowson (1965) distinguishes between two modes of deformation
that may exist in machine elements. In one mode, the contact
geometry may be affected by overall distortion of the elastic ma-
chine element resulting from applied lcads, as shown in figure
3.1(a). In the other, the normal stress distribution in the vi-
cinity of the contact zone may produce local elastic deformations
that are significant when compared with the lubricant film thickness,
as shown in figure 3.1(b). This is the mode of deformation with
which this present investigation is concerned. The important dis-
tinction is that the first form of deformation is relatively insen-
sitive to the distribution and magnitude of the stresses in the con-
tact zone, whereas the second mode of deformation is intimately
linked to the local stress conditions.

The correct evaluation of elastic deformation on the surface of
a solid depends upon an adequate representation of the applied nor-
mal pressures. The simplest procedure is to divide the actual pres-

sure distribution into rectangular blocks of uniform pressure and to

o U by o
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permit each rectangle to be of such small dimensions that adequate
predictions of elastic displacements ensue. More complex represen-
tations of two-dimensional pressure distributions within each rec-
tangle would generally permit larger rectangles to be used, but the
additional complexity of the expressions and added computation time
make it desirable to exploit the simpler representation to the full-
est. This chapter is devoted to a study of the adequacy of repre-
senting the applied normal pressures by rectangular blocks of uni-
form pressure.

The deformation analysis is developed in general form since it
will be used in later chapters to calculate elastic deformation in
the elastohydrodynamic lubrication of point contacts. To evaluate
the influence of mesh or plock size upon accuracy, the numerical in-
vestigation of this chapter con ‘ders only Hertzian contact stress
distributions.

The deformation analysis it..clf assumed that the contact zone
can be divided into rectangular areas and that the pressure is uni-
form within each rectangular area. Once the elastic deformation
had been formulated, investigations were performed to answer the
following questions:

(1) How fine do the semimajor and semiminor axes need to be
divided to achieve a given accuracy in deformation prediction?

(2) How far from the center of the contact does deformation be-
come insignificant compared with the separation of solids?

These questions were investigated for both light and heavy applied
loads and for both equal spheres in contact and a contact that is
common to the outer race of a ball bearing.

3.1 Elastic Deformation Analysis

In chapter 2 the general geometry of two ellipsoidal solids in

elastic contact was described. In the subsequent analysis it will




be convenient to consider the deformation of an equivalent elastic
half-space subjected to a Hertzian pressure distribution over the el-
lipse of semimajor and semiminor axes, a and b, as previously de-
fined. The resulting elastic deformation can be considered to be
equivalent to the total deformation of two elastic ellipsoids having
elastic constants EA’vA and EB,vB, respectively, if the half-
space is allocated the equisalent elastic parameter (E') defined by
equation (2.25).

Once the semimajor and semiminor axes of the contact ellipse
have been defined, the elastic deformation that occurs inside and
outside the contact zone can be evaluated. Figure 3.2 shows a rec-
tangular area of uniform pressure with the coordinate system to be
used. From Timoshenko and Goodier (1951) the elastic deformation at
a point (X,Y) of a semi-infinite solid subjected to a pressure (p)

at the point (Xl’Yl) can be written as

2p dx, dY,

dw = TE'r

The elastic deformation at a point (X,Y) due to thz uniform pressure

over the rectangular area 2a x 2b 1is thus

a b
- dx, dY;
T T
L B A (Y - Y%+ (X - x)2
] 1 1
-a -b
where
p =5

Integrating the preceding equation gives

w = 3 D (3.1)

R Y

B R S P
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_ - =2 =2
D= (X+D)ln (Y +a) + YRX +a)" + (X+1b)
G-+ VO -2+ (x+ )2
+(Y+5)ln(x+3)+ Yo + )2+ (x+ )2
(x—§)+V(Y+Z)2+(x—T§)2J
- =2 =
+(X-E)ln’——(—¥-a)+‘/(Y—a) + (X - b)
—_ f — —
v+ + Ve + 2+ x- B2
0 _ T =2 . o 2]
MR (CEIDER (RN S (3.2)
_(X+g)+‘/(Y—g)2+(X+E)2J
As a check on the validity of equation (3.1) the following two
cases were evaluated:
Case 1: For b=a and X =Y = 0, equation (3.1) reduces to
v=2% 1+ /2 (3.3)

Equation (3.3) represents the elastic deformation at the center of a
square of uniform pressure. This equation is in agreement with that
shown by Timoshenko and Goodier (1951).

Case 2: For b=a and X =Y = a, equation (3.1) reduces to

v=3921ma + /2 (3.4)

m

Equation (3.4) represents the elastic deformation at the corner of a
square of uniform pressure. This equation is also in agreement with
that of Timoshenko and Goodier (1951). From equations (3.3) and (3.4)
we find the corner deformation to be one-half the deformation at the
center of a square block of pressure.

Now the elastic deformation (;) in equation (3.1) represents
the elastic deformation at a point (X,Y) due to a rectangular area
2a x 2b of uniform pressure (p). If the contact ellipse is divided

into a number of equal rectangular areas, the total deformation at a

point (X,Y) due to the contributions of the various rectangular areas
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of uniform pressure in the contact ellipse can be evaluated numer-
ically. Figure 3.3 shows how the area inside and outside the contact
ellipse may be divided into a number of equal rectangular areas.

For purposes of illustration the contact was divided into a grid of

6 x 6 rectangular areas. The effects of the fineness of this grid

are discussed in section 3.4 of this chapter entitled Conditions In-

vestigated. Figure 3.3 can be used to write the total elastic de-
formation, caused by the rectangular areas of uniform pressure
within the contact ellipse, at any point inside or outside the con-

tact ellipse as

) 6 6
Tean T ;‘3=14%E. . i=1}§2. Lim,s -2
where
m= |k - i| +1 (3.6)
s=[0-j]l+1 (3.7

Note that Dl 1 would be D in equation (3.2) evaluated at
»

X=0,Y=0, while D would be evaluated at X=2b,Y=4a.

2,3
Equation (3.8) points out more explicitly the meaning of equa-
tion (3.5). The elastic deformation at the center of the rectangu-

lar area "9 5 (shown in fig. 3.3) caused by the piessure of the
b4

various rectangular arcas in the contact e2llipse can bYe written as

2
“o,5 T w TP iP5t Py Dg oL+ P6,1%.5
+ 1"1,21)9’/4 + P2,2D8,4 + . . .+ P6,2D4,4

) + P1,6D9,2 + P2’608'2 + ...+ P6,6D4,2} (3.8)

3.2 Hertzian Pressure Distribution

In this chapter it is assumed that within the contact ellipse
the pressure is described by the theory of Hertz (1882). Hertz

(1882), using a purely elastomechanical process, was able to describe
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the pressure distribution developed during contact of an ellipsoidal
and a plane solid (as those described in fig. 2.2(b)) that are un-
lubricated. Hertz found this pressure distribution to be semiellip-
soidal, and for any arbitrary point within the contact ellipse it

can be described by the following equation:

— T-N\2 (3.2
p(x,Y)=5ﬂ—g‘,”‘Tb 1-<Y—a~_a> _<Xbb> (3.9)

Note that the coordinate system common to figure 3.3 isg used in equa-

tion (3.9). 1Inside the contact area the pressure was assumed to be
described by equation (3.9); outside the contact area it was assumed
to be zero. Therefore, for example, from figure 3. 3, P3 4 would be
equivalent to the dimensionless pressure (P) from equation (3.9)
evaluated at X = 5p and Y = 7a.
3.3 Film Thickness

By making use of equations (2.5) and (2.9) developed in chap-
ter 2 the exact geometric separation between the ellipsoidal solid

and the plane shown in figure 2.2(b) for the coordinate system

developed in figure 3.3 can be written as

- (X - 1?2 ‘/ 20 ¥ -a)? (3.10)

As discovered in chapter 2, if 2Rx >> Sx and 2Ry >> Sy’ an ap-
proximate expression for the separation between the solid and plane

shown in figure 2.2(b) can be written as

w2 e 2
- X=b)" (Y -~a)
A T S (3.11)
X y

The degree to which the approximate equation (3.11) represents the

exact separation of the ellipsoidal solid and plane {s determined by

the following ratio:

R, =" (3.12)

The film thickness in an elastohydrodynamic lubricated point
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contact can be written as

h(X,Y) = h + S(X,Y) + w(X,Y) (3.13)
where
h constant
(o]
S(i,?) the approximate geometric separation of the ellipsoidal

solid and plane

w(f,?) elastic deformation

The significance of the elastic deformation relative to the geometric

separation of the ellipsoidal solid and plane can be expressed as
= ¥
R, = S (3.14)

3.4 Conditions Investigated

Figure 3.3 shows that we need to be concerned with the following
questions:

(1) How fine must the divisions of a and b be? 1In this
chapter we assume that the number of divisions of a and b will

be the same. Therefore, we can define the number of divisions as

d=-% =2 (3.15)

Silo

In this thesis we let d equ.l 3, 4, and 5.

(2) How far from the semimajor and semiminor axes does R2
(eq. (3.14)) become insignificant? In this study R2 was evaluated
at distances from the center of the contact of four times the semi-
major and semiminor axes.

To check the accuracy of the elastic deformation results for
d of 3, 4, and 5, the number of equal divisions along the semimajor
and semiminor axes was Increased by three times (d of 9, 12, and

15), and then corrésponding points were compared. The following

equation describes the percentage accuracy of the results compared

with the [inest-mesh-size predictions:
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w - W
R, - (»—d——@) x 100 (3.16)

The limiting conditions that were evaluated on a computer are
shown in table 3.1. It was speculated that conclusions that could
be made for these limiting conditions could also be made for any in-
termediate conditions. The four limiting conditions shown in ta-
ble 3.1 are two extremes of applied normal load; a light load of
8.964 newtons (2 1bf), and a heavy load of 896.4 newtons (200 1bf).
The two extremes of curvature of the solids shown in table 3.1 are
equal spheres in contact and a ball and outer race of a ball bearing.
The elliptical eccentricity parameter (k = a/b) is 1 for the equal
spheres in contact and 5 for the ball and outer race.

The equations thus far developed were programmed on the Leeds
University International Computers Limited (ICL) model 1906A digital
computer.

3.5 Discussion of Results

Tables 3.2 to 3.13 give the characteristics of the deformed
shape of the contacting solids along the semimajor and semiminor
axes when the axes are divided into three, four, and five equal di-
visions and the conditions of table 3.1 prevail. Some observations
can be made about these tables:

(1) Because of the coarse grid and the elliptical pressure pro-
file, there is not much decrease in pressure in going from the in-
nermost to the outermost point within the contact area.

(2) The agreement of S with S 1is seen to be good and is
borne out by the ratio of the two expressed in terms of Rl' The
biggest disagreement i{s in table 3.7 where R1 = (0.9870, which means
that S 1s in agreement with § within 1.3 percent. Because of
this good agreement, S will be used to define the geometric sepa-

ration of the ellipsoidal solid near a plane.

e R T U
I T
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(3) The ratio R2 of the elastic deformation to the ceometric
separation of the contacting solids is seen to decrease substantially
with increasing distance from the center of the contact zone. Fur-
thermore, the predictions of the distance at wh’ch the elastic de-
formation becomes insignificant compared with the geometric separa-
tion of the solids do not change whether we have two equal spheres
or a sphere and an outer race in contact.

(4) The separation due to the geometry of the contacting solids
plus the elastic deformation (S + w) is almost constant in the con-
tact zone. The value of (S + w) at the farthest point from the
center of the contact zone and yet still within it differs the most
from the other values of (S + w) in the contact zone.

(5) The percentage difference in elast?c deformation calcula-
tions for two mesh sizes differing by a factor of 3 was shown to be

small. For the worst case in table 3.11, R, was equal to 7.494 per-

3
cent. That is, the elastic deformation for d = 3 differs from the
elastic deformation at corresponding peints when a = 9 by 7.5 per-
cent, which is extremely good.

(6) Comparing table 3.2 with 3.5, 3.3 with 3.6, and so forth,
which amounts to changing the normal applied load from 8.964 newtons
(2 1bf) to 896.4 newtons (200 1bhf), leads to the following conclu-
sions:

(a) R2 does not change in the corresponding tables. That is,
regardless of the normal applied load, the ratio of the elastic de-
formation to the geometric separation of the solids is unchanged.

(h) R‘3 does not chauge in the corresponding tables. This con-
dition is undoubtedly because of the condition menticned in (a).

To better i{llustrate the results shown in the tables, tigures
3.4 to 3.9 are presen.ed.  In figures 3.4 to 3.6 the solid curves

represent the case of equal spheres in contact, which is represented

T
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by Rx = Ry = 0.5558 cm (G.2188 in.): and the dashed curves represent
the ball and outer race in contact, which is represented by Rx =
1.286 cm (0.5055 1in.), Ry = 15.0u em (5.%06 in.). Also as a result
of rhe observation made in discussing the tables that RZ and R3
are not functions of the normal applied load, the results shown in
figures 3.4 to 3.6 apply for any normal applied load.
Figures 3.4(a) and (b) show the effects of the location along
the semimajor and semiminor axes, respectively, on the percentage
difference in elastic deformation for d of 3 and 9. Here an "edge %
effect" can be seen, which 1s a rapid rise in percentage difference
in the film thickness when d = 3 and for corresponding points when
d = 9. This rapid rise is due to the pressure being either zero if
the center of the rectangular area shown in figure 3.3 is outside the
contact zone or of the order of 105 if the center of the rectangular
area 1is within the contact zone. However, it is speculated that in
lubricated contacts, where the pressure gradients are, ir general,
more gradual than those encountered near the edge of a dry Hertzilan
contact, this edge effect is likely to be less significant. Also
note that outside the contact zone the value of R} decreases.
Figures 3.5(a) and (b) show the effect of the location along
the semimajor and semiminor axes, respectively, on the percentage
difference in elastic deformation for d of 3, 4, and 5 and the more
exact elastic deformation for d of 9, 12, nd 15. These figures
show a large drop in R3 from d =4 to d =5, which also brings
down the edge effect considerably.  There is, therefore, g vood case
for letting d = 5 in any further computer cvaluations,
Flgures 3.6(a) and (b) chow the eftect of the location alonyg the
semimajor und semiminor axes, respectively, on the ratio ot the olas-

tic deformation to the geometric separation of the ellipsoidal solid

near a plane.  These figures show the distance trom the semimijor and




1 semiminor axzs at which the elastic deformation becomes insignifi--
cant. To be more specific, from the curves we see that for equal
spheres in contact (represented by solid lines in the figures)

R2 < 0.05 corresponds to x > 2.6 b and y > 2.6 a. Thus, the
elastic deformation is less than 5 percent of the geometric separa-
tion at a distance from the center of the contact zone that is no
less than 2.6 times the semimajor or semiminor axis. For the ball

and outer race in contact, R, < 0.05 corresponds to y > 1.9 a

2
and x > 4.0 b. 1In other words, the elastic deformation is less

than 5 percent of the geometric separation at a distance of only 1.9
times the semimajor axis and 4.0 times the semiminor axis from the
center of the contact zone.

Figures 3.7(a) and (b) show the effect of the location along
the semimajor and semiminor aves, respectively, on the geometric
separation of the ellipsoidal solid near a plane plus the elastic
deformation when the load is 8.964 and 896.4 newtons (2 and 200 1bf)
and the ellipticity parameter (k) is 1 and 5. The conditions men-
tioned in this figure correspond to those of table 3.1. These fig-
ures show the sum of the film thickness components to be essentially
constint within the contact zone.

Figure 3.8 shows the effect of the number of divisions across
the ellipse axes on the computer time for running all four conditions
shown in table 3.1. Here we see that the computer run time quickly
becomes exorbitant as d is increased. This is why only celected
data for R, were obtained.

3
3.6 Concluding Remarks

A numerical analysis of the elastic deformation of a contacting
ellipsoidal solid and plane has been performed. The analysis as-
sumed that the pressure in the contact zone was Hertzian. It also

assumed that the contact zone could be divided into rectangular areas

P
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with uniform pressure within each rectangular area. The resulting
equations were programmed on a digital computer. Four limiting con-
ditions were evaluated on the computer. They consist of two ex-
tremes of applied normal load: a light load of 8.964 rewtons

(2 1b£f), and a heavy load of 896.4 newtons (200 1bf). The two other
extremes are of the curvature of the contacting solids: two equal
spheres in contact, and a ball and outer race of a ball bearing. It
was speculated that conclusions that could be made for the limiting
conditions could also be made for any intermediate condition.

The results indicate that division of the semimajor and semi-
minor axes into five equal subdivisions ig adequate to obtain ac-
curate elastic deformation results. Also the elastic deformation
becomes insignificant compared with the geometric separation of a
sphere near a plane at a distance from the center of 2.6 times the
semimajor axis. For a ball and outer race in contact, a similar
observation applied at a distance from the center of 1.9 times the
semimajor axis and 4.0 times the semiminor axis. Finally, the geo-
metric separation plus the elastic deformation (S + w) was almost
constant in the contact region. However, numerical values of
(8 + w) at points near the edge of the Hertzian contact show that a
slight edge effect or error may be encountered in such regions,

In lubricated contacts, where the pressure gradients are, in gen-
eral, more gradual than those encountered near the edge of a dry

Hertzian contact, this effect is likely to be less significant.




CHAPTER 4
THEORETICAL FORMULATION OF THE £LASTOHYDRODYNAMIC
LUBRICATION PROBLEM
The elastic deformation model was developed, along with an
appropriate nodal structure, in chapter 3. The theoretical for-
mulation of the elastohydrodynamic lubrication prcblem is given in
this chapter. The procedure here is to give the Navier-Stokes equa-
tions of motion as well as the continuity equation. Then with the
assumptions that are imposed on the problem, these equations are re-
duced to the Reynolds equation. The pressure-viscosity formula of
Roelands (1966) is used. In the numerical analysis of the Reynolds
equation, a ¢ analysis (where ¢ 1is equal to the pressure times
the film thickness to the 3/2 power) is used to help the relaxation
process. A standard finite difference representation is applied to
the various terms in the Reynolds equation. By applying a Gauss-
Seidel relaxation method to the finite difference form of the Rey-
nolds equation, a converged solution of ¢ for the complete nodal
structure is obtained. hen ¢ 1s known, the pressure at the
various nodes can be obtained. When the pressure is known, the in-
tegrated lcad is calculated, and adjustments are made for the
initially guessed film constant (HO) until the integrated load and
the input load are in agreement. A flow chart of the computer pro-
gram is given, as well as the complete computer FORTRAN listing.

4.1 Reynolds Equation

The derivation of the Re nolds equatioun governing the pressure

distribution in an elastohydrodynamic lubricated (EHL) conjunction
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is based on the Navier-Stokes equations of motion and the continu-
ity equation. The most general form of the Navier-Stokes equations
of motion for a Newtonian fluid in Cartesian coordinates as obtained

from Pai (1956) is

Du_;_3p .23 93_@1_&)] 2 [ fov éﬂ)]
°pe - X B'K+38'X[n(28')f - wz)) iRt
B[ (2 4 3u (4.1)
t 3z [”(ai + 37)]
v _g_3p, 23 (ﬂ_y_ﬁﬂ o[ (v @ﬂ
°pe = ¥ aY+3aY[”23Y x ~ a2/ T |GE Ty
3 [ [ow av\] (4.2)
(%)
Dw _; _3p .23 ﬁ_ﬂ_ﬂ) i%ﬁ ﬂy
P pe T2 a’z+3a'z[“<zaz 3% ay]+ai<‘_”ai+ai_
3 [ [av | aw)]
+W-T|(8T+'81Y'>‘ (4 3)
where
D _ 0 3 I
D .2, , 24,2+ 0l 4.4
bt e TUMPTVYI TV (4.4)

In equations (4.1), (4.2), and (4.3) the left side corresponds to
the inertia terms and the right side contain: the body force, pres-
sure, and viscous terms, in that order. The following assumptions
are made in solving the EHL point-contact problemn:
(1) No external forces act on the film. Thus,
X=Y=2=0
(2) Fluid inertia is small when compared with viscous shear.

These inertia forces are associated with acceleration of the fluid.

Thus,
Du _Dv _Dw_ ,
Dt Dt Dt
(3) There is no variation of pressure across the fluid film.
Thus,
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(4) The viscosity (n) and density (p) are constant in the 2
direction.

(5) The radius of curvature of the solids bounding the o0il film
is large when compared with the thickness of the lubricant films.
This assumption allows any effects due to curvature of the oil film
to be neglected.

(6) There is no slip between the fluid and bounding solids at
common boundaries. Thus,

7 = 0, u=u v=20

N

=h, u-= v=0

ug,
(7) Because of the geometry of the fluid film, the derivatives
of u and v with respect to Z are large when compared with all
other velocity gradients.
(8) Steady-state conditions are considered.

With these assumptiors, the Navier-Stokes equations of motion

(eqs. (4.1), (4.2), and (4.3)) reduce to the following:

3 b ,
,—;% =7 “’_:% (4.5)
‘ 3z
3 32
g Vv
5% = n'sz (4.6)
az
9p _ .
2z =0 (4.7)
The velocity distributions (u) and (v) can be found by integrating
equations (4.5) and (4.6) twice while using the boundary conditions
according to assumption 6.
The equation of continuity, representing mass conservation, is
g ) (e
RAGIY) 4+ 2ev) 0 (4.8)

3X 3y
Coupling the velocity distributions with the equation of continuity

leads to the following equation, which was developed by Reynolds

(1886) and carries his name:

oA
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2 (oh” 3p) . 3 b op) _  —
ai(/n ax) * a?(fn ay) = 12u 35 (eh) (4.9)
where
;= uA+uB
2
Letting
v Yy - o
X* = &2 Y* = = = -
b’ a’ P po ;
(4.10)
- n _h P
n=—, H“s P = T
nO Rx E

equation (4.9) can be rewritten as

3 3 =
O_(eBD 9P} 1 5 (fon ap) _ _12-)__(9.3 H).
ax*(hﬁ ax*) * 12 BY*(iﬁ 8Y*> 12U(§ 3X* (4.11)

where
k ellipticity parameter, a/b
U dimensionless speed parameter, nO;/E'Rx

Equation (4.11) is the Reynolds equation in dimensionless form.
The normal requirement is for dimensionless parameter (P) to be de-
termined. Before proceeding, however, the dimensionless density (5),
the dimensionlesg viscosity (ﬁ), and the dimensionless film thick-
ness (H) need to be formulated.
4.2 Density

At the high pressures that exist in the elastohydrodynamic
lubricating film, the liquid can no longer be considered as an in-
compressible medium, and the dependence of the density on the pres-
sure must be considered. Tron Dowson and Higginson (1966) the dimen-

sionless density for mineral 0il can be written as

. —0.009 p
P Ty 0006 (4.12)
where
.2
) Bage pressure, ton/in.

.
Iiil“
e
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Therefore, the general expression for the dimensionless density can

be written as

- . __YPE'
R T (4.13)

where B and vy are constants dependent on the fluid.
4.3 Viscosity
As long ago as 1893, Barus proposed the following formula for

the isothermal viscosity-pressure dependence of liquids:

*ln<:l> = ap (4.14)
"o

——

where

n dynamic viscosity at gage pressure ®)

R P

o dynamic viscosity at atmospheric pressure

a pressure-viscosity coefficient of lubricant
The pressure-viscosity coefficient (¢) in equation (4.14) character- i

izes the liquid considered and depends only on temperature, not on

pressure. Although equation (4.14) is extensively used, it is not
generally applicable and is valid as a reasonable approximation only
in a moderate pressure range.

Because of the shortcomings of equation (4.14), several iso-
thermal viscosity-pressure formulae have been proposed that usually
contain two or more parameters instead of Barus's (1893) single pa-
rameter. One of these approaches, which is used in this thesis, is
that of Roelands (1966), who undertook a wide-ranging study of the
effect of pressure upon the viscosity of the lubricant. For iso-

thermal conditions, the Roelands (1966) formula (p. 95) can be

written as

Z

y y B B 2 .-__E.- r
log n + 1200 (Lok ng + 1.4)0)(1 + 2000) (4.15)

*log denotes the common or Brigpgsian logarithm, 10310;

:@' In  denotes the natural or Napierian logarithm, log,.
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where

p gage pressure, kgf/cm2
Z viscosity-pressure index, a dimensionless constant

Taking the antilog of both sides of equation (4.15) gives

z
(log n +1.2)(i+-ll—) -1.2
- 0 ~2000/
n =10

Rearranging this equation yields

Z Z
_p_ 2\
G*zooo) c 10 Rﬁ*zooo) ]
0

For the dimensionless form of the viscosity given in equation

n =

(4.10), this equation becomes

Z VA
- ~ o~ —
- 0 [é*zooo) 'ﬂ l'“[@ﬁéooo> ]
n=-——=mn x 10

nO 0

Rearranging terms in this equation gives

[1-(1422)]

r](‘()
-z (4.16)
n

where
My = 6.31x107° N s/m’(0.0631 cP)

and ¢ {is a constant equal to 19 60Y N/cm2 (28 440 1bf/in.2).
In equations (4.13) and (4.16), care must be taken to ensure that
the same dimensions are used in defining the constants.

In the Roelands (1966) formulation the lubricant is defined by
the atmospheric viscosity (no), the viscosity-pressure index 72,
and the asymptotic isoviscous pressure (p ). The equation de-

iv,as

scribing the asymptotic isoviscous pressure can he written as

- wlﬁp /
piv,us - nO JKF n (4.17)

Blok (1964) arrived at the very important conclusion that all FHI

¢ results achieved hitherto for an exponential viscosity-pressure de-

T T A_M“
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rendence (eq. (4.14)) can, to a fair approximation, be generalized
for any given nonexponential dependence simply by substituting the
reciprocal of the asymptotic isoviscous pressure (l/piv,as) for the
viscosity-pressure coefficient (a) occurring in those results. This

implies that

1
o (4.18)
piv,as
It might be pointed out how the vaiues of the parameters no, Z,

and piv,as are obtained for a given lubricant by using the Roelands
(1966) formulation. From table II-1 (p. 48 of Roelands (1966)), for
a paraffinic mineral oil, coded 31-C, the atmospheric viscosity (no)
is found to be 41.1 centipoise. From table IV-2 (p. 106 of Roelands
(1966)), for the same Iubricant the viscosity-pressure index (Z) is
found to be 0.67. When the atmospheric viscosity (no) is known, the
following expression can be evaluated:

log(log o + 1.2) = 0.4493
Making use of this equation in table XTI-2 (p. 452 of Roelands (1966))

for 7z = 0.67 leads to

log Piy as = 2.695

p = 4859 N/cm2

iv,as
This, then, establishes the procedure used to obtain the parameters
No» Z, and piv,as for a given lubricant.
4.4 Film Thickness

As was stated in chapter 2, the separation due to the geometry
of the two ellipsoidal solids shown in figure 2.1 can be adequately
described by an equivalent ellipsoidal solid near a plane. The ge-
ometric requirement is that the separation of the ellipsoidal solids
in the initial and equivalent situations should be the sa - at equai

values of ¥ and Y. Therefore, from figure 4.1, the separation due

to the geometry of the two v¢llipsoids shown 1in figure 2.1 can be
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written for an ellipsoidal solid near a plane as

K- mb)® , (¥ - 9a)°

S(X,Y) = 2R ] 2R

(4.19)
y

where

m constant used to specify length of inlet region

) constant used to specify length of side-leakage region

For purposes of illustration the mesh described in figure 4.1 will
still be used, where m =4 and £ = 2. However, the equations
developed will be written in general terms.

Figure 4.2 gives a physical description of the film thickness
and its components for an ellipsoidal solid near a plane. Equation
(3.13) describes how the components are related in deseribing the
film thickness. 1In figure 4.2 it is assumed that Y is held con-
stant near the midplane o7 the contact.

Substituting ¢ con (4.19) into equation (3.13) while at the
same: vime making this equation dimensionless as in equation (4.10)

gives

HE'K* ~ Q)Z az(Y* - 9)2 w{X* Y*)
+ - A ———t . S Y S + LA 2 L

2 ZRXR (4.20)

y X

where HO is a constant that is initially estimated.

In chapter 3 the elastic deformation (w in eq. (4.20)) of an
equivalent ellipsoidal solid near a plane in contact and subjected to
a Hertzian stress distribution has been evaluat.? numerically.
Theretore, by using figure 4.1 and the results o7 chapter 3, the

clastic deformation can be written as

20xe (mén)xe

9
L (Xk . YRY) = & ) 2
wk,}‘,(x P Y%) N Z z }i,ij,n (4.21)
i=1,2 Li=1,2,...

where

n constant used to determine length of outlet region

e i e e e
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c number of equal divisions in semimajor axis (in fig. 4.1, c =5)
d number of equal divisions in semiminor axis (in fig. 4.1, d=15) .
m= |k - i| +1 ‘
and
n=|2-jl+1

+ a(Y* + ~—'>1n
c

- N = Y (4.22)
(o0 &)+ gi2frr = 2) (0 1)
Equation (4.23) points out more explicitly the meaning of equation
(4.21) while making use of figure 4.1. The elastic deformation at

the center of the rectangular area w9 5 (fig. 4.1) caused by the

pressure on the various rectangular areas in an around the contact

ellipse can be written as

p

-
Pl,l D(),S + P2,l 1)8,5 + . . . + P35,1 027,5
+P D, , +P, .D., +...4+P _ D
2 1,2 79,4 2,2 70,4 35,2 727,4 (4.2%)
w = - . .
9,5 m

;+ Py 20%, 16 * P

P ¢
2,20%8, 16 T Pas.2027,16)

4.5 Phi (¢) Solution

Having defined the density, viscosity, and film thickness, we

can return to the problem of solving the Reynolds equation. It {s
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well known (e.g., Whomes (1966)) that the dimensionlesg pressure (P)
of the R-ynolds equation plotted as a function of x* exhibits a
very localized pressure tield, giving high values of JP/3x* and
32P/3X*2. Such a condition with high gradients is not welcomed when
berforming a numerical analysis by means of relaxation methods. In
order to produce a much gentler curve, a parameter (p) is introduced,
where

b= pud/2 (4.24)
The pressure (P) is small at large values of film thickness (H) and
conversely. This substitution also has the advantage of eliminating
all terms containing derivatives of products of H and P or H

and 4. Therefere, Ly using equation (4.24), ecquation (4.11) can be

written as

ot I T S R VE T RY B SN N V2R PR 1/2_3ﬁ) .
;)x*[u‘(” oxx T2 T )+ ST L G 7 S KL B |

b\ (oh)
IQU(R) X
\

Expanding this equation yields

WY (e B0 L1 f o0y _@uiﬁﬂu2w>
IX*\n Xk k2 IY* Ty oy 2L X*\n JX*

4.6 Finite j{gffjig§glp}i_R}jlr§:§}ylgjgyi;{n

The finite difference method will be used to develop the various
terms in e¢quation (4.29). Figure 4.9 shows the mesh to be used as
related to the dimension]ess coordinates X* gnd Y4, Fquation
(4.25) must be written for the point (i,§) in figure 4.3 by substitu-
ting, for the derivatives, eXpressions that involve vialues of ¢

Hy oy and 1 ar the surrounding points.

At the three polnts x* x> . and  X*

y N, A Lyl ¢ t -
i-1,) i, i+1, ] v tunction of

X* such as  © can be represented by g parabola, where
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Y= A(X*)2 + BX* + C (4.26)
The parabola and corresponding points are shown in figure 4.4. The

expressions for wi—l T wi ., and

) wi+1,j can be written directly

from equation (4.26) as
2

= * + * . P
Vi1, 3 A(Xi_l’j) BXY 3+ C (4.27)
2 *
o= A(X* )° + BX +C 4.28
b5 = AGY ) 1,] (4.28)
_ * i *
bigp,g = MKy 7 P BR3P C (4.29)

From figure 4.4 the following equations can be written:

* = x* +l
X, " %1, 7 4
X _ ok 2

Xi+l,j Xi-l,j + d

Substituting these expressions into equations (4.28) and (4.29) gives

2
* 1 * 1
= = =)+ .
Y1, A<Xi_1,j + d) + 13.(xi_1’j + d) C (4.30)
, _ o ox N 2)2 + B[x* + 23 +c 4.31
bivr,y - MKor T a (Xi-l,j d> (4.31)

Therefore, given equations (4.27), (4.30), and (4.31), it is possible

to solve for A, B, and C to give

2
=% - vy .
A=y Gy ™ 2y Y i) (4.32)
B=9 4y, - - ) - 2ax* (4.33)
2 -1, ~ U141, i-1,)
= - * _ * 2 \
C = vpy.y - BXY AP (4.34)

The following derivatives can be written by using e¢quations (4.32),
(4.33), and (4.34):

d

V., iL—_l’.l‘l = * z ‘o ! - 1 -
’x‘,;-l . ZAXi-l.j + B B 0.5 d((o./i'j '”i—l,j vH’l,i)
v) (4.139)
_.'.';iJ‘i = DAY * + = ')‘ ( * + 1 ) + = 9 * + + ?'_A = ' + Q,A
)xq ] .Axi’i B 2A Xi-l,] d B 'Axi-l.] B d B d
‘ (4.36)

REVRODLCIT I i [
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| 3
. I, .
~»-—i-1 = 0,5 1 -y
T)sz]. (0.5 d("i‘*l,j wi—l,j) (4.37)
!
Yy
i+1 * / J 2
Tk 2AX + B = 2A(X, . . ) + B =
3X1+1’ i+1, ( i-1,] d
. ) .- u + U A .
0.5 d(3pi+1,3 Aui,j wi-l,J) (4.38)
2 2 2
3%, . W, Sl ;
- +
--vl.__]:.!,l - e 1 = ,_iJJJ - 2.‘\ - dz(l{} - 21) . + w )
*x2 *2 *2 i+1,j i,] i-1,]
SXi_l . 3)(i . 3Xi+l .
s ] s ] s ] (4.39)
| i
| /
| Having dev_loped these basic quations with the dummy variable
j
t (v), we can now proceed to develop the various terms in equation
| (4.25) by using the finite difference format developed in this sec-
tion. The following equation is written for the point 1,j:
5 (; 1/2 :m) T T (:m)
ol ) = 005 df T o
YXA\ 1 JX* , i Pl X
X*\ 1 X ri”'l'_i\ L X
Vil,] pro (M
-~ o .4t
SR L (?"X*). | e
i-1,i i-1,]
From equations (4.38) and (4.55) the followinyg equations can be
written:
(‘-’”) = 0.5 d(3H GH. .+ ) (4.41)
* - . L i+ .~ P . . .
1X 41, ] i+, iy i~1,1
(35‘ = 0.5 d(-H +GH - M ) (4.42)
X% ) . S & 0 B i, i-1,] -
i-1,]
Substitut ing equations (4.41) and (4.42) into (4.40) gives
SR VAT T be 2, : :
. i P o (.lr P 2 . - + .
M('¥ it k) C 025 o \/“m,, SR L P AL T
Yi-1,] : : ,
+ ? 1 - ¢ + 4.4
'll—l ’ v i-1, ] (”i*'l,i .“i.i “{i_l‘}) (4.473)

Fhus, the tellowing equatious can be directly written:
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N P, .
_?L(E _3¢_> = (.25 dz[_ﬁl)_l (3¢)

(2 T A T
IX*\n 9X* ni+l,j itl,] ¢1,J ¢1—1,J)
01
+ 11, _ .
Mg, Ly T Yt 3¢i—1,jﬂ (446
1-1,.]
a — _ — —
e P = 054Gy SH 57 Pimn, 5P, y) (4.45)

The derivatives with respect to Y* can be ubtained directly by sub-
stituting c¢ for d, the subscript i,j~1 and i-1,j, and the sub-

script i,j+1 for i+l1,j.

8 (p ,1/2 BH\ _ 2(°1,4+1 _
ay*(ﬁ H ay*) 0-25 ¢ [%i 1 Vi GHy 541 74 5 HEy 5y
b

P, .
i,i-1 -
+ ﬁ;L::I \/Hi,j—l (Hi,j+l AHi,j + 3Hi,j-lﬂ (4.46)

o 0. .
(e 9% _ 2| i,j+1 _
ay*(ﬁ‘ SY*) 0:25 ¢ [ﬁi o P T 80 g 0y )

o. .
_1,j-1 -
3 (5,541 ~ 405 5 F 3¢i,j-1ﬂ (4.47)

Ni,j-1
Substituting equations (4.43) to (4.47) into equation (4.25) while

collecting terms gives

03%590,5 T P 50a,5m1 ¥ G gtinn 5t Dy g0 gar Ly 00,5 My g < O
(4.48)
where
w= < (4.49)
n
Ayi T g Y ey (4.50)
/ 2

— = [-< + 3y ) (4.51)

B, 3 K (“i,j+1 M1 ‘

_— .

1,5 7 Mie1,5 T i1,y (4.52)

N T

e
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T T T T P v T PP T
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o =

2
C
- 3
by @) Oyt Y1,5-1

(4.53)
Li,j = 4(“i+1,j + Ui—-l,j) + A(d_k) (ui,j+l + ui,j—l)
3
NS {”iﬂ,j Vit g Gl g = 4y 5+ b 0
1,3
2

— C
- 4H, . + )+ (==
“i—l,j Hi-l,j (Hi+l,j 4 i,] 3Hi—1,J) (dk)

e : - + .
om0 VG iy Gy gy = vy g

N - .5
+ Mi,5-1 VHi 501 (Hi,jJr1 4Hi’j + 3Hi,j_l)]} (4.54)
o _24ub - -
SN dr 13/2 ® i1, 501, 5 Pi-1,311-1,5 (4.55)
X i,j

4.7 Nodal Structure

The nodal structure used in obtaining most of the results is
shown in figure 4.5. This nodal Structure was arrived at after much
exploration in which the number of nodes in the semimajor and semi-
minor axes, as well as the distance from the center of the contact
to the edges of the computing zone, was varied. The . dal structure
shown in figure 4.5 was considered to be suitable when the minimum
film thickness did not change when either additional nodes were placed
in the semimajor and semiminor axes or the distance from the center
of the contact to the edges of the comp ting zone was extended.

From figure 4.5 the follcwing can be written:

m= 4 h

n=1.15

L= 1.6 r (4.56)
c=5

d =13 J
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These values used to define the nodal structure were used for most of

the evaluations. One exception was for high~speed cases when the
constant used to determine inlet length (m) had to be extended from
4 to 6, with the other values being held constant.

4.8 Boundary (onditions

The boundary conditions are the following:

(1) At the edges of the rectangular computation zone (fig. 4.5) V{
the pressure is zero, which therefore implies that ¢ is also zero. ;
Specifically, this means that along the bottom of figure 4.5,

= 0; along the left side, ¢l 3 = 0; along the top, ¢, = 0;

5,1 1,16

67,5 = O ;

(2) At the cavitation boundary,

and along the right side,

This condition is commonly known as the Reynolds condition and will
be satisfied by simply resetting ¢i . to zero whenever it occurs
3

as a negative value.

4.9 Initial Conditions

Outside the Hertzian contact ellipse the pressure is initially
assumed to be zero, and therefore ¢ 1is also equal to zero. That
is, 4 = 0 when

x* - m? o+ (vx - )% > g
Inside the Hertzian contact ellipse the pressure is initially as-

sumed to be Hertzian; that is,

3F 2 2 :
= S - * - - * -
Po= il Jl (XF - m)® ~ (Y* - g) (4.57)
or
3/2 -
3FH 2 2
= e - e . s - * -
b= S {1 (%~ m)° - (Y% - 2) (4.58)
when

2 2
(X¥ = m)" + (Y* - )" <1




i
4.10 Relaxation Method j

If the subscript n 1is the iterant and ¢i . 1s the particular 3

, i

solution to be found, the relaxation method known as the Gauss-

|
Seidel method can be expressed as

4,9, T %5,5,m

_A(Miji"Ai,j¢1+1)j,n"Bi,j¢i,j—11n+1"Ci,j¢i-1,j,n+1"Di,j¢i,j+1,n

Li,j i

- + ¢i,j,n> (4.59)
where 1 1is an overrelaxation factor that is initially set to 1.6.
Therefore, equation (4.59) is used, starting with node (2,2) and then
continuing with (3.2), . . ., until (M,2) followed by

(2,3), (3,3), . . ., (M,3), and ending with (2,N), (3,N). . . ., (M,N),

1
j
where

M= (n+m)d - 1
: (4.60) |
- N = 20c -1 ]

The relaxation procedure described by equation (4.59) is con-

tinued until

N M :
§ § RN - |
¢i,j,n+l 1

|
3=2,3,... i=2,3,...

4.11 Pressure Loop :

The relaxation method provides values of ¢i 3 for every point

within the mesh. Having determined ¢i e we can write the dimen- f
bl

sionless pressure as

- ~3/2 g
Py T by ) (4.61)

With these new values of the dimensionless pressure, new values of

the dimensionless viscosity, density, and film thickness can be

3 evaluated. Thus, the coefficients of equation (4.59) L
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]
A, ., B, ., .. ., L, .) should also change. Accordingl it is
(1,J, 1,J, ’ 1,]) 10U g gLy, t
necessary to reenter the relaxation loop. This process is con-
tinued until the following inequality is satisfied:
N M
1 U AN 3
. _.].JJ_?_Q Bt _v.v._.,];rj_Ln», < O 1 i
P, . ’
i,j,nt+l
i=2,3,... i=2,3,... 5
4.12 Normal Applied Load
The constant Ho in equation (4.20) was i1nitially estimated.
!
The next task is then to find the correct value for Ho' In order to
do this, the integrated normal applied load must be evaluated, where
B mrtn 24
F = E'ab / f P dY dX (4.62)
0 0 K
By applying Simpson's rule, this double integral can be rewritten as
[ 2 P tey For, s, + PP, L, P i
Py P, LA SR + O L)
e . . . . . .
)' = .Q{.‘-L[- ' ’ ' ) ‘ ' 44
Al it il TP i o I 0 3
“(Jnﬁ'n-ﬁ..‘ * }nH-n-.‘. i * Jnr*;rf.". * lrrﬁ\—l,'v b o ‘“‘.Hn-“,"w-.‘ * 'w&n—‘.‘,.,’--])
¢ (”’rtrhl‘l,.‘ * PnH-n—l,l + ")ynrhrl‘.’o v Pnﬂ‘n-l.'ﬁ oot ')Pm-*n—l,‘—ﬁ ¢ PT‘.T*(I‘]‘A"'I)J

This equation can be written simply as

T S

mn-1
— _ 4E'ab A S
F = “ocd 2 2 hpi,j (4.63)
=53 j=2,3,... |
where
q; = 0 if i 1is odd
q1 =1 if 1 1s even i
4, = 0 if j is odd ;
q2 =1 if j 1s cven i
By using the trapezoidal rule, the normal applied load can also be
exnressed as J
REPRODUCIBILITY OF TUER A

CHIGTNAL PAGEH I3 POOR
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mn-1
& 20-1
-~ _ E'ab E ;
F = 4 Pij (4.64)
i=2,3,...
15737, 3783

Both equations (4.63) and (4.64) were programmed to serve as a check
on one another.

When the current values of Ho and f-(eq. (4.63)), as well as
the initial normal applied load (F) are known, a new estimate for

(HO) can be expressed as

_ 4013 }
Ho = Ho(f) (4.65)

With a new value for HO the film thickness (eq. (4.20)) is recal-
culated, and reentry into the relaxation process is required. This

process is continued until the following convergence is satisfied:

p— |
Jff%}fl-< 0.0005

Once this cunvergence criterion has heen satisfied, the pressure and
film thickness in and around a point contact are established.
4.13 Flow Charts

Figures 4.6 and 4.7 are flow charts for the numerical solution
on the digital rcomputer of the equations developed in the analysis.
Figure 4.6 is the flow chart of the main program. There are essen-
tially three loops within the main program: In the relaxation loop,

¢. . is generated. 1In the pressure loop, the new values of
i,j,n+l i

¢i joot] of the relaxation loop result in new values of pressure
b t] -

n+1’ which in turn result in new values of film thickness i, .

[P
1,73, i,J

new values of viscosity Ei Ik and new values of density Bi i The
b 2.

final loop is the normal-load loop, which ensures that the integrated

normal applied load agrees with the initially specified value.
Figure 4.7 is the flow chart of the subroutine SUB6. Here it

can be seen that a numher of calculations occur only once and need

not be repeated on reentering this subroutine. With a new pressure
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distribution the elastic deformation is recalculated and this sub-

routine is left with a new film thickness and, therefore, a new

. . .- The FORTRAN listings of the main and SUB6 computer pro-
i,j,nHi

grams are given in the appendix. The FORTRAN listings of the EHL

point-contact analysis were programmed on the NASA Lewis Research

Center's Sperry Univac 1100/42 computer, which has 131 K primary

memory and 262 K extended memory. i -

4.14 Concluding Remarks i
In this chapter a procedure for the numerical solution of the

complete, isothermal, elastohydrodynamic lubrication problem for

point contacts is given. This procedure calls for the simultaneous

solution of the elasticity and Reynolds equations. 1In the elasticity

analysis the contact zone was divided into equal rectangular areas.

It was assumed that a uniform Pressure was applied over each area.

In the numerical analysis of the Reynolds equation the parameter

¢ = PH3/2, where P is the dimensionless pressure and H the di-

mensionless film thickness, was introduced in order to help the re-

laxation process. The nodal structure, boundary conditions, and

initial conditions were given and a Gauss-Seidel relaxation method

was used. The computer program has three major loops: the relaxation

loop, the pressure loop, and the normal-load loop. The last loop re-

quires the integrated load to be in agreement with the input load

within some tolerance. Upon the convergence of all threc loops the

pressure and film thickness in and around a point contact are estab-

lished.




CHAPTER 5
FULLY FLOODED RESULTS

The most important practical aspect of the elastohydrodynamic
lubrication (EHL) point-contact theory developed in chapter 4 is
the determination of the minimum film thickness within the contact.
That is, maintaining a fluid film of adequate magnitude is extremely
important to the operation of some machine elements. In the present
chapter the influence of contact geometry as expressed in the el-
lipticity parameter and the dimensionless speed, load, and material
parameters on minimum film thickness is investigated for a conjunc-
tiorn fully immersed in lubricant (i.e., fully flooded). In the nu-
merical work the ellipticity parameter is varied from 1 (a ball-on-
plate configuration) to 8 (a configuration approaching a line
contact). The dimensionless speed and load parameters are varied
over ranges of about two and one orders of magnitude, respectively.
Conditions equivalent to using solid materials of bronze, steel, and
silicon nitride and lubricants of paraffinic and naphthenic mineral
oils are considered in obtaining the exponent on the dimensionless
material parameter. Thirty-four different cases are used in obtain-
ing the fully flooded minimum-film-thickness formula. A central-
film-thickness formula is also developed.

In this chapter, contour plots are shown that indicate in detail
the pressure spike and the two side lobes in which the minimum film
thickness occurs. These theoretical solutions for film thickness
have all the essential features of previously reported experimental

observations based on optical interferometry.




5.1 Dimensionless Grouging

The variables resulting frowm the isothermal EHL point-contact

theory developed in chapter 4 are

RX effective radius in x-direction, mm
Ry effective radius in y-direction, mm
h film thickness, mm

E' effective elastic modulus, N/mm2

piv,as asymptotic isoviscous Pressure obtained from Roelands (1966),

N/mm?
u surface velocity in x~direction, mm/sec
N atmospheric viscosity, N * sec/mm?
Z viscosity pressure index, a dimensionless constant
F normal applied force, N
a, B constants used to define density of fluid, mm2/N

It has been found by Dowson and Higzinson (1966) that density has
little effect on minimum film thickness for line-contact situations;
therefore, one may assume the same is true for point-contact situa-
tions. Even though the compressibility effect is still considered
in the EHL theory developed in chapter 4, the constants used to de-
fine the fliuid in the density equation will not be used in the
minimum-film-thickness formulation. Therefore, the 11 variables men-
tioned above were reduced to nine, n and B8 being eliminated. From
the nine variables the following five dimensionless groupings can be
written:

(1) Dimensionless film thickness

- _h
H = = (5.1)
X
where
§L= T-I_J,;l_ (5.2)
X Ax Bx

The radii of curvature in equation (5.2) are shown in figure 2.1.
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(2) Dimensionless load parameter
w=_.__F2 (5.3)
E'R
X
where
E' = 2 (5.4)
1 - v2 1 - v2
— A + - B
“A B
i
(3) Dimensionless speed parameter
nau
_ 0
U= E'R (5.5)
X
where
(u, + u_)
u= " (5.6)
(4) Dimensionless material parameter
]
e — (5.7)
piv,as
\ where Piv. as is the asymptotic isoviscous pressure obtained from
/ Roelands (1966). The asymptotic isoviscous pressure can be approx-
imated by the inverse of the pressure-viscosity coefficient
n
(piv,as v 1/a).
(5) Ellipticity parameter
=3
k = b (5.8)
where
' a semimajor axis of contact ellipse
b semiminor axis of contact ellipse

The ellipticity parameter is determined entirely from the definition

of the radii of curvature (r r, ,and r_ ), and the deriva-

Ax’> "Bx’ TAy By

I tion can be found in chapter 2.

The dimensionless film thickness can be written as

H= f(k,U,W,G) (5.9)
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The most important practical aspect of the EHL point-contact theory
developed in chapter 4 is the determination of the minimum film
thickness within the conjunction. Therefore, in the fully flooded
results to be presented in this chapter the dimensionless parameters
(k, U, W, and G) will be varied and the effect upon minimum film
thickness will be studied.

5.2 Effect of Ellipticity Parameter

The ellipticity parameter (k) is a function of the radii of

curvature of the solids only (r r

. Ax’ r. ,and r_ ). The radii

Bx’> "Ay By

of curvature in the x-direction for both solids A and B are used
in defining the dimensionless speed and load parameters. Therefore,
only the radius of curvature of solid B in the y-direction will

be changed in varying the ellipticity parameter from 1 (a ball-on-
plate configuration) to 8 (a configuration approaching a line con-

tact). In doing this the dimensionless speed (U), load (W), and

material (G) parameters were held constant at the following values:

U= 0.168sx10 11
W= 0.1106x10"° (5.10)
G = 4522

Care was taken to ensure that the highest ellipticity parameter

(k = 8) was in the elastic region. The cpproach used was to relate
the ope.ating conditions for this near-line-contact situation to the
tlastic region defined in figure 5.1, which was obtaincd from Dowson
and Whitaker (1965). From this figure the elastic, intermediate,

and rigid regions are defined for ¢ = 5000 (which is very close to
the value of ¢ in eq. (5.10)) and for various values of dimension-
less speed (U) and dimensionless load (WD). The dimensionless speed
(U) in Dowson and Whitaker (1965) is exactly that used in this thesis,

The dimensionless load (Nn) used in figure 5.1 differs from that used

in this thesis, and a tie between the two must be developed.  The
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, dimensionless load parameter as defined by Dowson and Whitaker (1965) |
is
S F
! Wy = TR (5.11)
X
where
P o= Force

Unit lengtﬁ

Therefore, in relating this to an elliptical contact in which the el- .
lipticity parameter (k) is large compared with unity, a dimensionless ,

load parameter can be written as

(5.12)

For this equation and k = 8 the location of U and WD is shown
by a circular symbol in figure 5.1. As can be scen, it lies within
the elastic region. Thus, for the conditions given in equation
{5.10) and for a ellipticity parameter (k) of 8, the conjunction is
truly elastohydrodynamic. For k less than 8 the results move
further into the elastic region.

Table 5.1 gives 10 values of k and the corresponding minimum
film thickness (“min) as obtained from the EHL point-contact theory
developed in chapter 4. Having these 10 pairs of data, the object
is to determine an equation that describes how the ellipticity pa-
rameter affects the minimum film thickness. The general form of this

equation can be written as

H o
1 - min )L Bk (5.13)

“min,L

A least-square exponential curve tit to the 10 pairs of data noints

t

_ ,LQUE

. 4]
! Hmin.l_ {

{=1l,. . ., 10

was used in obtaining values tor A and B In equation (5.113).

. . - i
Besides a least-square Yit a coetticient of determination (r-) is




49

obtained. The value of r2 reflects the fit of the data to the re-

sulting equation: | being a perfect fit, and zero the worst pos-
sible fit. The minimum film thickness for a line contact (Hmin I)
y L

used in equation (5.13) was determired by finding the ”min,L that
gives a covefficient of determination closest to 1. The line-contact
minimum film thickness was thus deduced from the present set of
results for the limiting case in which the ellipticity paramcter (k)
approached infinity. This value of Hmin,L turned out to be
7.082)(10”6 with a corresponding coefficient of determination of
0.9990, which is an excellent fit, Furthermore, the values of A
and B 1in equation (5.13) as obtained from the least-square fit are

A= 0.9966 % 1.90 (5.14)

B = ~0.6752 % -0.68 (5.15)
From equations (5.13), (5.14), and (%.19%) the following proportion-
ality can be written, which shows the effect of ellipticity parameter
on minimum film thickness:

" . (] - 0-0.68 k)

min

(5.16)
where H = h . /R, predicted by the relationship that gives the
min min' 'x
best least-square fit to the numerical solutions. It is most sig-
nificant that A turns out to bhe 0.9966, or approximately 1.00,
since as k » 0, “min 0. Therefore, oven though the smallest
vilue of  k  used in obtaining cquation (5.16) way unityv, it would
seem th.’l(y('qll;lt fon (5.16) could bhe applicd to smaller values since
in the limiting case (k » D%, equation (5.16) satisfics the physical
sftuation. For the other extreme ot large  k, a line-conticet situa-
tion is approached and the Anreement with existing results i again
wood.  From Dowson and Hivyinson (1966) the Line-contact minimum
tilm thickness for the dimensionless parameters piven in equation

~f , , ; ~t
(.10 is 7.720x107 7, Compare this with 7,082x107" trom the present

results. The ditterence or 9 percert could well be the result of
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Dowson ard Higginson (1966) u.ing an exponential pressure-viscosity
relationship instead of the Roelards (1966) formulation used in the
present work.,

Substituting equations (5.14) and (5.15) into equation (5.1%)
gives Hmin’ the dimensiontoss minimym film thickness obtained f rom
the least-square formulation. The ﬁmin for the 10 ellipticity
barameters are given in table 5.1. The percentage difference be-
tween the minimum film thickness obtained from EHL point-contact
theory (Hmin) and the minimum film thickuness from the least -square-

it equation (H . ) g express: ' oas
min

Lo o= H
Iin fin

”1 = 0o 100 (5.17)

min

liote that in table 5.1 the magnitude of “i never exceeds '3 percent.

Figures 5.2 to 5.10 wive contour plots of pressure and tilm thick-
ness for ellipticity parametoers of B, b, 4, 3, 2.5, 2, 1.75, 1.5, and
l.25, respectivelv.  In these tigures the other dimensionloess naram-
cters (U, G, W) were held Fized, as described in cquation (5.10).
In parts (a) of these Fisures, contour plots of dimensions pressure
are piven; in parts (b)), contonr piots of dimensiontess film thick-
ness are given; aad in oparts (o), three-dimensional represeantat ions
Ctopressure are i The 4 sembol in parts (a) and (b)) indieotes
the center ot the Hertsian - ract. Note that, because ot the di-
mensfonless representation ot 1 e eoordinates, the actoal He teziap
contact ellipse becomes a cirele regardless ot the value of the of -
Lipticity parameter.  The Herteian contact circie {5 shown in each ot
parts () and (h) by asterisks. At the top ot each part the con-

tour label and the corresponding value are viven. The inlet reyion

i to the tetft and the ex{t oresion I oto tine riyvht,
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For an ellipticity parameter (k) of 8, the maximum pressure is
near the center of the contact (fig. 5.2(a)); and even though the
conditions are in the elastic region, no pressure spike occurs. As
the ellipticity parameter is decreased (going from fig. 5.2(a) to
5.5(a)) the maximum pressure moves to the right (i.e., downstream
of the center of the Hertzian conjunction) and increases in value.
In decreasing the ellipticity parameter even more (going from fig.
5.6(a) to 5.10(a)) the label of the pressure spike goes from A
to C although the numerical values of the contours are different
in each case. The pressure gradient is much larger at the exit end
of the conjunction than at the inlet region. The pressure distribu-
tion is seen even more dramatically in figures 5.2(c), 5.3(c), . - «,
5.10(c), corresponding to ellipticity parameters of 8, 6, . . ., 1.25.
The three-dimensional representation of pressurz shows the details
of the pressure spike more clearly.

Figures 5.2(b), 5.3(b), - - -, 5.10(b) show contour plots of
film thickness when the ellipticity parameter (k) is 8, 6, &, 3, 2.5,
2, 1.75, 1.5, and 1.25, respectively. For k = 8 the minimum film
thickness is in a small area directly behind the axial center of the
contact As k 1is decreased the minimum film area moves away from
the axial center of the contact. For k = 1.25, twe minimum-film-
thickness areas occur at the sides nearer the edge of the Hertzian
rircle. These results, showing the "side lobes" in which minimum-
f1lm-thickness areas occur, produce all the essential features of
previously reported experimental observations based upon optical in-
’ terferometry.

’ Figures 5.11(a) and (b) show the variation of pressure and film

thickness, respectively, in the X-direction close to the midplane

j REPRODUCIT ¢
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of the contact for three values of the ellipticity parameter. As
has been true for all the ellipticity parameter results Presented,
the values of the dimensionless speed, load, and material parameters
were held fixed asg Per equation (5.10). 1In figure 5.11(a) we find
that for k = 6 no spike occurs, but this well-known feature of
theoretical solutions to the clastohydrodynamic problem is evident
for k = 2.5 and k = 1.25.

In figure 5.11(b) for k = 1.25 the central region is not
parallel with the XFaxis. The reason is probably that compressi~
bility effects are considered in the theory developed in chapter 4.
That is, when compressibility is considered, the film thickness in

the center is reduced by the amount that the fluid volume decreases

at high pressure.

5.3 Influence of Speed

By changing only the surface velocity in the x-direction (u)
the dimensionless speed parameter (U) (eq. (5.5)) changes, but the
other dimensionless parameters (k, W, and G) remain constant. The

values at which these dimensionless parameters were held constant in

the calculations are

Kk = 6
W= 0.7371x10"° (5.18)
G = 4522

Table 5.2 gives the dimensionless speed parameter (U) and the
f corresponding minimum film thickness (Hmin) as obtained from the EHL
point-contact theory developed in chapter 4. There are 15 different
values of the dimensionless speed parameter covering nearly two
orders of magnitude. Having these 15 pairs of data, the objective

J is to determine an equation that describes how the dimensionless

speed affects the minimum f{ilm thickness., The general form of this
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ejuation can be written as

B, = 1€ (5.19)

min
By applying a least-square power fit to the 15 pairs of data
{(u,, H . ), 1 =1, . . ., 15}, the values of I and K were

i* “min,i

found to be

I = 560.18 (5.20)

K = 0.67542 ¥ 0.68 (5.21) ‘

The coefficient of determination (r2) for these results was excellent
at 0.9998. Substituting equations (5.20) and (5.21) into equation
(5.19) gives the values of ﬁmin shown in table 5.2. The percentage
difference (Dl) between the minimum fiim thickness obtained from the
EHL, point-contact theory (Hmin) and the minimum film thirlneee nh-
tained from the least-squares fit (ﬁmin) is expressed in equation
(5.17) and given in table 5.2. Note that the variation of Dl is
less than *2 percent.

From equations (5.21) and (5.19) the effect of dimensionless
speed on dimensionless minimum film thickness can be written as
U0.68

H o

v $ -
i

(5.22)
Figures 5.12 to 5.26 give contour plots of pressure and film
thickness for dimensionless speed parameters ranging from 5.050)(10_11

to 8.4l6x10_13. The other dimensionless paramaters (k, W, and @)
were held fixed as described in equation (5.18). As was true for
the ellipticity results, contour plots of pressure and film thickness
are designated a and b, respectively, and three-dimensional repre-
sentations of pressure are designated c¢.

In figure 5.12(a) the maximum-pressure area is near the center
of the contact. As the dimensionless speed is decreased to and in-
cluding U = 5.892x10_12 (fig. 5.21(a)), the maximum-pressure area

moves downstream to the right. For dimensionless speeds greater than

U= 5.892x10-12 the maximum-pressure area moves back tovard the cen-
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ter of the contact. Note that the "spike" pressure exceeds the
Hertzian maximum pressure at U = 5.892x10—12, but at smaller speeds
(e.g., U= 4.208X10-12) the Hertzian pressure is dominant. Also
note in these figures that the pressure in the inlet region is
higher at high speeds than at low speeds.

In figure 5.12(b), a high-speed situation, two minimum-film-
thickness areas appear midway between the center of the contact and
the KHertzian circle. As the speed decreases, the two minimum-film-—
thickness areas reduce to one, which is located at the axial center
of the contact. With further reductions of speed the minimum-film-
thickness area still remains in the axial center but moves closer
to the Hertzian circle.

In figure 5.12(c) a three-dimensional representation of the
pressure for the highest speed case is shown. Here no pressure spike
occurs, and the pressure rises to a peak that was shown in figure
5.12(a) to be near the center of the centact. As the speed is re-
duced the pressure spike emerges, and the top of the pressure pro-
file becomes flatter. Once the pressure spike occurs, it moves
toward the exit of the conjunction as the speed decreases.

Figures 5.27(a) and (b) show the variation of pressure and film
thickness, respectively, on the X-axis at the midplane of the con-
junction for three values of dimensionless speed parameter. In fig-
ure 5.27(a) the dashed line corresponds to the Hertzien pressure dis-
tribution. Figure 5.27(a) shows that the pressure in the inlet region
is higher for the high-speed (U = 5.050x10" ') profile. For
U= O.8416x10_ll and U = 0.08416x10_11, the pressure spike orig-
inates very near to the Hertzian pressure, and as the speed in-
rreases the pressure spike moves upstrean.

The typical elastohydrodynamic film shape with an essentially

parallel section in the central region is shown in figure 5.27(b).
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Also there is a considerable change in film thickness as the di-
mensionless speed is changed, as indicated by equation (5.22). This
illustrates most clearly the dominant effect of the dimensionless
speed parameter (U) upon the minimum film thickness in elastohydro-
dynamic contacts.

5.4 Influence of Load

By changing only the normal applied load (F) in equation (5.3)
the dimensionless load parameter (W) changes while the remaining di-
mensionless parameters (k, U, and G) remain constant. The values

at vhich these parameters were held constant are

k=6
U= 0.1683x10 1! (5.23)
C = 4522

Table 5.3 gives the dimensionless load parameter (W) and the
corresponding minimum film thickness (Hmin) as obtained from the EHL
point-contact theory developed in chapter 4. There are eight differ-
ent values of the dimensioniess load parameter, covering over an
order of magnitude. Having these eight pairs of data, the objective
is to determine an equation that describes how the dimensionless
load affects the minimum film thickness. The general form of this

equation can be written as

.
Hmin = QW (5.24)

By applying a least-square power fit to the eight pairs of data

{(Wi, Hmin,i)’ i=1, ..., 8}, the values of Q and L were
found to be
Q = 2.1592x107° (5.25)
L = -0.072924 ¥ -0.073 (5.26)

The coefficient of determination (r2) for these results was 0.9260,

which was good, but was the lowest obtained in deriving the minimum-

film-thickness equation (5.33). Substituting cquations (5.25) and
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(5.26) into equation (5.24) gives the values of ﬁmin shown in
table 5.3. The percentage difference (Dl) between the minimum
film thickness obtained from the EHL point-contact theory (Hmin)

and the minimum filwm thickness from the least-square-fit equation

(Hmin) is expressed in equation (5.17) and given in table 5.3. 1In

table 5.3 the variation of Dl is within *3 percent at all times.
From equations (F.24) and (5.26) the effect of load on minimum
film thickness can be written as
ﬁmin « w*0.073

(5.27)

Figures 5.28 to 5.35 give contour plots of pressure and film
thickness for dimensionless loads ranging from 0.1106}(10“6 to
1.290x10—6. The other dimensionless parameters (k, U, and G) were
held fixed as described in the relationship (5.23). Once again, in
parts (a) of these figures, contour plots of pressure are given; in
parts (b), film thickness contours are presented; and in parts (c),
three-dimensional representations of pressure are given.

In figure 5.28(a) the maximum pressure occurs directly behind
the center of the contact, with no pressure spike occurring. As the
load is increased the pressure spike emerges. With further increases
of load the pressure spike moves toward the exit of the conjunction.
These results can be more clearly scen in the three-dimensional
representation given in parts (c) of figures 5.28 to 5.35.

In figure 5.28(b), the low-load case, the minimum film thick-
ness occurs directly behind the center of the contact. As the load
is increased the minimum-film-thickness area still remains in the
axial center of the contact but closer tc the Hertzian circle. With
further increases of load, two minimum-film~thickness areas appear

equidistance from the axial center and closer to the Hertzian circle.

In figure 5.35(b), the highest load case considered, the minimum
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film thickness is off to the sides in two areas close to the Hertzian

circle.

The variation of pressure and film thickness in the il
direction along a line close to the midplane of the conjunction is
shown in figure 5.36 for three values of the dimensionless load pa-
rameter. The values of the dimensionless speed, material, and el-
lipticity parameters were held fixed as described by equation (5.23)
for all computations at various loads. 1In figure 5.36(a) note that
as the dimensionless load is increased the inlet pressure becomes
smaller. For the highest load case shown in figure 5.36(b), film
thickness rises between the central region and the outlet restriction
in the same manner as seen in figure 5.11(b). Again this is attrib-
uted to compressibility effects of the fluid. Also note that at a
load of W = 0.5528x10_6 the film thickness is slightly smaller than
at a load of W = 1.106x10_6. The reason is that at the lower load
the minimum film thickness is closer to the axial center of the con-
tact than at the higher load. As was pointed out in discussing fig-
ures 5.18(b) to 5.35(b), the location of the minimum-film-thickness

region changes as the dimensionless load is changed.

5.5 Effect of Material Properties

Contrary to what was found in the previous three sections, the
effect of the dimensionless material parameter on minimum film thick-
ness is not a simple matter. As can be seen from equations (5.3),
(5.5), and (5.7), when either the material of the solids (as ex-
pressed in E') or the lubricant (as expressed in o and piv,as)
is varied, not only does the material parameter (G) change, but so
do the dimensionless speed (U) and load (W) parameters. Only the
ellipticity parameter can be held fixed. For all the results pre-

sented in this section the ellipticity parameter is held fixed at a

value of 6.
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Table 5.4 gives the four material-parameter results. The gen-
eral form showing how the minimum film thickness is a function of the

dimensionless material parameter is given as

¢ TGV (5.28)
where
C = Hnin
€T . 0.68 ky ,0-68,,-0.073 (5.29) |

Note in equation (5.29) that the exponents are rounded off to two
significant figures so that any error could be absorbed in T given
in equation (5.28). By applying a least-square power fit to the
four pairs of data, the values of T and V were found to be
T = 3.6891 (5.30)
V = 0.48669 ¥ 0.49 (5.31)
The coefficient of determination for these results was 0.9980, which
i is =xcellent. Substituting equations (5.30) and (5.31) into equa-
tion (5.28) gives the values of ﬁmin shown ir table 5.4. The per-
centage difference (Dl) shown in table 5.4 varies by only 2 percent
at all times. Therefore, from equations (5.28) and (5.31) the effect
of the dimensionless material parameter on the dimensionless film
thickness can be written as
B« 049 (5.32)

5.6 Minimum-Film-Thickness Formula

] The proportionality exprzssions (5.16), (5.22), (5.27), and
(5.32) establish how the minimum film thickness varies with the el-
lipticity, speed, load, and material parameters, respectively. This
enables a composite minimum-film-thickness formula for a fully flood-
ed, isothermal, elastohydrodynamic point contact to be written as

i = 3,63 0 680-49,-0.073

i e—0.68 k
min !

(1- (5.33)

In equation (5.733) the constant 3.63 is different from that in equa-
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tion (5.30) to account for rounding off the material-parameter ex-
ponent.
Table 5.5 gives the 34 different cases used in obtaining equa-

tion (5.33). 1In this table, H corresponds to the minimum film

min
thickness obtained from the EHL point-contact theory developed in
chapter 4, and ﬁmin is the minimum film thickness obtained from
equation (5.33). The bpercentage difference between these two values !
is expressed by Dl’ which is defined in equation (5.17). 1In ta-
ble 5.5 the values of D1 are within *5 percent.
It is sometimes more convenient to express the side-ieakage
factor in equation (5.33) in terms of the radius of curvature ratio

(Ry/Rx) instead of the ellipticity parameter (k) through the follow-

ing relationship:

/& \0-64
k = 1.03 El (5.34)
X
where
1
ot (5.35)
y Ay By
ot (5.36)
X Ax Bx

A least-square power fit was used in obtaining equation (5.34). This
equation is valid for Ry/Rx between 1 and 40. The coefficient of
determination associated with this power fit was 0.9997, which is
excellent,

Using equation (5.34) avoids the need to evaluate elliptic inte-
grals of the first and second kind in the determination of k. The
minimum film thickness can thus be derived directly from a knowledge
of the radii of curvature of the contacting bodies (rAx’ r..,r, .,

Bx’ "Ay

and rBy)'

It 1s interesting to compare the new point-contact, minimum-
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film-thickness formula (eq. (5.33)) with the corresponding equation
generated by Dowson (1968) for line contacts

O.7OGO.54w—O.13

= 2.65" (5.37)

Hmin,L
The powers of U, G, and W in equations (5.33) and (5.37) are quite
similar considering the different numerical procedures upon which
they are based. It is also worth noting that the power (W) in
equation (5.33) is extremely close to the value of -0.074 proposed

by Archard and Cowking (1966) in their study of point contacts.

5.7 Central-Film-Thickness Formula

There 1s interest in knowing the central film thickness, in
addition to the minimum film thickness, in elastohydrodynamic con-
tacts. In this section a central film thickness will be formulated.
The procedure used in obtaining the central film thickness is the
same as that used in obtaining the minimum film thickness.

Table 5.6 gives 10 values of the ellipticity parameter (k) and

the corresponding central film thickness (Hc) as obtained from the

S e

EHL point-contact theory developed in chapter 4. The other dimen-
sionless parameters (U, W, and G) were held constant as defined by
the relationship (5.10). Having these 10 pairs of data, the objective
is to determine an equation that describes how the ellipticity param—
eter affects the central film thickness. The general form of this

equation can be written as

CHE 1 - = fe (5.38)

A least-square exponential curve fit to the 10 pairs of data points

HC
1- =1, i=1, ..., 10

c,L 1

ki'

was used in obtaining values of I and J in equation (5.38). The
value of Hc L in equation (5.38) was found to be 8.69x10-6 and was
’

determined by finding the value of Hc that gives a coefficient of

L
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determination (rz) closest to 1. The values of f and J 4n equa-
tion (5.38) and the coefficient of determination (r2) as obtained

from the least-square fit are

I=0.61178 % 0.61 (5.39)
J = -0.73377 % -0.73 (5.40)
r? = 0.96356 (5.41)
The value of the coefficient of determination (r2) in equation (5.41) ;

is not as good as that obtained for the ellipticity portion of the

minimum-film-thickness formula, which was 0.9990. From equations

(5.38), 75.39), and (5.40) the following proportionality shows the
effect of the ellipticity parameter on central film thickness:

-0.73 k

ﬁc « (1~ 0.6] e ) (5.42)

Substituting equations (5.39) and (5.40) into equation (5.38) gives

Hc, the dimensionless central film thickness obtained from the least-

square formulation. The values of ﬁc for the 10 values of ellip-
ticity parameter (k) are glven in table 5.6. The percentage differ-
ence between the central film thickness obtained from the EHL
point-contact theory (H.) and the central film thickness obtained

from the least-square fit (HC) is expressed as

H - H
D, =[-& €1 100 (5.43)

2 H
c

’

Note in table 5.6 that 02 is within the range -117 < 02 < 4Z.
This is a larger range than that found for the minimum-film-thickness

formula, which was +3 percent.

Table 5.7 gives the dimensionless speed parameter (U) and the

corresponding central film thickness as obtained from the EHL point~-
contact theory developed in chapter 4. The values of the other di-
mensionless parameters (k, W, and G) were held constant as def ined

in equation (5.18). The general form of the equation that describes

how the dimensionless speed affects the central film thickness can
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be written as

H, = Ku™ (5.44)

By applying a least-square power fit to the 15 pairs of data
{(Ui’ Hc,i)' 1=1, ..., 15}, the values of K and L were found
to be
K = 537.73 (5.45)

L = 0.66722 % 0.57 (5.46)
The coefficient of determination (rz) for these results was 0.9990,
Substituting equations (5.45) and (5.46) into equation (5.44) gives
the values of ﬁc shown in table 5.7. The percentage difference
(D2) between the central film thickness obtained from the EHL point-
contact theory (HC) and the central film thickness obtained from the
least-square fit (ﬁc) is expressed in equation (5.43) and given 1in
table 5.7. 1In table 5.7, D2 is In the range -4% <D, < 6%Z. This

2

is to be compared to the range of D for the minimum film thick-

1
ness, which was *2 percent.
From equations (5.44) and (5.46) the effect of dimensionless
speed on dimensionless central film thickness can be written as
H o« U0.67

c (5.47)

Table 5.8 gives the dimensionless load parameter (W) and the
corresponding central film thickness (HC) as obtained from the EHL
polint-contact theory developed in chapter 4. The values of the other
dimensionless parameters (k, U, and G) were held constant as defined
i equation (5.23). The general form of the equation that describes
how the dimensionless load affects the central film thickness can
be written as

H o= MW (5.48)

By applying a lcast-square power fit to the eight pairs of data

{(Wi, HC i)' =1, ..., 8}, the values of M and N were found
»
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to be
M = 2.8508x107® (5.49)
N = ~0.067248 % -0.067 (5.50)
The coefficient of determination (r2) for these results was 0.7303,
which 1s not as good a fit as the 0.9260 obtained for the load por-
tion of the minimum—fllm—thickness formula. Substituting equations

(5.49) and (5.50) 1into equation (5.48) gives the values of ﬁc shown '

in table 5.8. The percentage difference (DZ) between the central film
thickness obtained from the EHL point-contact theory (HC) and the
central film thickness obtained from the least-square fit (ﬁc) is ex-

pressed in equation (5.43) and given in table 5.8. In table 5.8, D

2 .
is *5 percent.
From equations (5.48) and (5.50) the effert of dimensionless
load on dimensionless central film thickness can be written as
H o« w0067 (5.51)

Table 5.9 gives the four material parameters and the correspond-
ing central film thickness (Hc) as obtained from the kHI, point-contact
theory developed in chapter 4. The ellipticity parameter (k) was
held fixed at 6 for the results shown in table 5.9, The general
form of the equation that describes how the dimensionlesg material

Parameter (G) affects the central film thickness can be written as

Q= 1Y (5.52)

where

H

Q= - _C

(1 - 0.61 V73 K, ,0.67 0,067

By applying a least-square power fit to the four Pairs of data, the
values of T and Vv were found to be
T = 2.6595 (5.53)
Vo= 0.52776 % 0.53 (5.54)

The coefficient of determination (r2) for these results was 0,9804.




64

Substiftuting equations (5.53) and (5.54) intc equation (5.52) gives

the values of H. shown in table 5.8. The values of D2 as ex-

pressed in equation (5.43) are shown in tabie 5.9. In table 5.9, the
values of 02 are within the range of =47 < D2 < 5%,
From equations (5.52) and (5.54) the effect of dimensionless

material parameter on the dimensionless central film thickness can

be written as

THENCOES (5.55)
The proportionality expressions (5.42), (5.47), (5.51), and

(5.55) establish how the ceatral film thickness varies with the el-

lipticity, speed, load, and material parameters, respectively. This

enables a composite central-film-thickness formula for a fully flood«d

isothermal, elastohydrodynamic point contact to te written as

~ 1 - ?
i = 269 0+ 67,0.53,-0.06

(1 - 0.5 & 073 Ky (5.56)
If it is desired, the side-leakape factor in equatiop (5.56) can be
expressed in terms of the radius-of-curvature ratio (Ry/Rx) instead
of the ellipticity parameter (k) by using equation (%5.34).

Comparing the central-film-thickness formula (5.56) with the
mininum-film-thickness formula (5.33) reveals a slight difference.

In equation (5.56) the load exponent is small but negative, as it was
for the minimum~film-thickness formula. This is in contrast witn

the recent numerical study of Ranger et ai. (1975), who found a small
but positive exponent on the dimcnsionless load (W) in their formula-
tion of a central film thickness.

Table 5.10 gives the 34 different cases used to obtain equa-
tion (5.56). In this table, HC correspond: to the central film
thickness obtained from the [lL point-contact theory leveloped in
chapter 4, and ﬁc corresponds to the central film thickness ob--

tained from equation (5.56). The perceatage difference between these

two values is expressed by D,, which is defined in cquation (5.4)5).
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In table .10 the values of D2 are within +10 percent.

5.8 Concluding Remarks

By using the procedures outlined in an earlier chapter the in-
fluence of the ellipticity parameter and the dimensionless speed,
load, and material parameters on minimum film thickness have been
investigated. The ellipticity parameter was varied from 1 (a ball-
on-plate configuration) to 8 (a configuration approaching a line
contact,. The dimensionless speed parameter was varied over a range
of nearly two orders of magnitude. The dimensionless load parameter
was var_ed over a range of about one order of magnitude. Situations
equivalent to using solid materials of bronze, steel, and silicon
nitride and lubiticants of paraffinic and napthenic mineral oils were
considered in an investigation «f the role of the dimensionless ma-
terial parameter. Thirty-four different cases were sed to generate
the following minimum-film-thickness and central-film-thickness

relationships:

49 - -
0.0800.49w 0.073 o 0.68 k

N, = 3.63U

min a -

)

0.67G0.53w-u.067 9—0.73 k

H =2.69 U

. (1 - 0.61

)

The ellipticity pavameter (k) car be written as

R 0.64

k = 1.03 Ri

Contour plots have been presented that indicate in detail the
pressure distribution and the film thickness. In some solutions,
pressure spikes were in evidence. The theoretical colutions of film
thickness have all the essencial features of previously reported ex-
perimental observations based upon optical interferometry.

The importance of the present chapter lies in the fact that it
presents fcr the first time a satisfactory theoretical film-
~hickness equation for elastchydrodynamic point contacts operating

RN >
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under fully flooded conditions. The exponents on the various dimen-
sionless parameters governing minimum film thickness in such conjunc-
tions are quite similar to those developed by Dowson (1968) for

line contacts. The most dominant exponent ¢~2urs in associ~tiop
with the speed parameter, while the exponent on the load parameter
is very small and negative. The material parameter also carries a
significant exponent, although the range of this parameter in en-
8ineering situations is limited. Ranger, et al. (1975) have de-
veloped a central-film-thickness formula for the contact geometry

of a ball on a plate from which an estimate can be made of the
minimum film thickness. However, the work presented in this chap-
ter is valid for any contact geometry and proceeds directly to the
evaluation of the minimum film thickness.

Perhaps the most significant feature of the prcnosed minimum-~-
film-thickness formula is that it can be applied to any contacting
solids that present an elliptical Hertzian contact region. Many ma-
chine elements, particularly rolling-element bearings, possess such
geometry, and it is expected that the new minimum~film~thickness

equaticn will find application in such fields.
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. CHAPTER 6
STARVATION RESULTS

It was not until the late 1960's and early 1970's that the in-
fluence of lubricant starvation upon elastohydrodynamic behavior
received serious consideration. Prior to this time it was assumed ]
that the inlets were fully flooded. This assumption seemed to be
entirely reasonable in view of the minute quantities of lubricant
required to provide an adequate film. However, in due course it was
recognized that some machine elements suffered from lubricant star-
vation.

How partial filling of the inlet to an elastohydrodynamic con-
junction influences pressure and film thickness can readily be ex-
plored theoretically by adopting different starting points for the
inlet pressure boundary. Orcutt and Cheng (1966) appear to have
been the first to proceed in this way for a specific case corre-
sponding to a particular experimental situation. Their results
showed that lubricant starvation lessened the film thickness.
Wolveridge, et al. (1971) used a Grubin (1949) approach in an
analysis of starved elastohydrodynamic lubricated line contacts.
Wedeven, et al. (1971) analyzed a starved condition in a ball-on-
plate geometry, and Castle and Dowson (1972) presented a range of
numerical solutions for the starved line-contact elastohydrodynamic
situation. In these references the analysis vielded values of the
proportional reduction in centerline film thickness from the fully
flooded condition in terms of a dimensionless inlet boundary pa-
rameter.

In the present chapter, 15 cases in addition to citres pre-
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sented in chapter 5 were used to obtain the starvation results.

From the results a simple dimensionless inlet boundary distance was
written. This inlet boundary distance defines whether a fully flooded
or a sterved condition exists in the contact. Furthermore, it was
found that the film thickness for a starved condition could be
written in dimensionless terms as a function of the film thickness

for a fully flooded condition and the inlet distance parameter. Con-
tour plcts of pressure and film thickness in and around the contact
are shown for fully flooded and starved conditions. The thecoretical
findings are compared directly with previously reported results.

6.1 Boundary between Fully Flooded and Starved Conditions

Figure 6.1 shows the computing area in and arou~d the Hertzian
contact. In this figure, as defined in chapter 4, the coordinate X
is made dimensionless with respect to the semiminor axis (b) of the
contact ellipse and the coordinate Y is made dimensionless with re-
spect to the semimajor axis (a) of the contact ellipse. The elliptic-
ity parameter (k) is defined as the semimajor axis divided by the
semiminor axis of the contact ellipse (k = ../b). Because of the di-
mensionless form of the coordinates X and Y, the Hertzian contact
ellipse becomes a Hertzian circle regardless of the ellipticity pa-
rameter. This Hertzian contact circle is shown in figure 6.1 with a
radius of unity. The edges of the computing area, where the pressure
is assumed to be ambient, are also denoted. In this figure the di-
mensionless inlet distance (m), which is equal to the dimensionless
distance from the center of contact to the inlet edge of the com-
puting area, is shown.

Lubricant starvation can be studied simply by reducing the di-
mensionless inlet distance (m). A fully flooded condition is said to
exist when the dimensionless inlet distance ceases to influence in

any significant way the minimum film thickness. When starting from
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a fully flooded condition and decreasing m, the value at which the
minimum film thickness first starts to change is called the fully
flooded - starved boundary and is denoted by m*. Therefore, lubri-
cant starvation was studied by using the basic elastohydrodynamic
lubrication point-contact theory developed in chapter 4 and cbserv-
ing the effect of reducing the dimensionless inlet distance.

Table 6.1 shows the effect of changing the dimensionless inlet
distance upon the dimensionless minimum film thickness for three
groups of dimensionless load and speed parameters. For all the re-
sults presented in this chapter the material parameter (G) is fixed
at 4522 and the ellipticity parameter is fixed at 6. In this table
it is seen that as the dimensionless inlet distance (m) decreases the
dimensionless minimum film thickness (Hmin) decreases.

Table 6.2 shows how the three groups of dimensionless speed
and load parameters affect the location of the dimensionless inlet
boundary distance (m*). Also given in this table are the correspond-
ing values of dimensioniess central and minimum film thickness for
the fully flooded condition as obtained by interpolation of the nu-
merical values. The value of the dimensionless inlet boundary (m*)
shown in table 6.2 was obtained by using the data from table 6.1 when

the following equation was ratisfied:

l‘min,F - G%dn) -

Hmin,F

= 0.03 (6.1)

The value of 0.03 is used in equation (6.1} since it was ascertained
that the data in table 6.1 cou’d only be obtained to an accuracy of
+3 percent.

The general form of the equation that describes how the dimen-

sionless inlet distance at the fully flooded -~ starved boundary (m*)

varies is given as
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B*
Rx 2
* - = A% || —= .
m 1=A > Hc,F (6.2)
[
The right side of equation (6.2) is similar to the forms of the
equation given by Wolveridge, et al. (1971) and Wedeven, et al.
(1971). By applying a least-square power fit to the data obtained
from table 6.1, the following can be written:
i
’]0.58
Rx 2
* = X
m 1+ 3.06 b Hc’r (6.3)
A fully flooded condition exists when m > m*, and a starved condi-
tion exists when m < m*., The coefficient of determination (r2) for
these results is 0.9902, which is excellent.

If in equation (6.2) the dimensionless minimum film thickness
is used instead of the central film thickness, the following is
obtained:

0.56
Rx 2
* = X
m 1+ 3.34 b Hmin,F (6.4)
The coefficient of determination for these results is 0.9869, which
again is excellent.

From Wedeven, et al. (1971), using the symbols of this thesis,
the dimensionless inlet distance at the fully flooded - starved
boundary can be written as:

2/3
Rx 2

Comparing equation (6.3) with equation (6.5) indicates close agree-
ment with Wedeven, et al. (1971). The latter, however, predicts a
slightly higher value of the fully flooded - starved boundary than

predicted from the present results.
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6.2 Starvation Film Thickness Formulas

Having clearly established the limiting location of the inlet
boundary for the fully flooded conditions (eqs. (6.3) and (6.4)),
an equation defini.g the dimensionless film thickness for lubricant
starvation conditions will be developed. The relationship between
the dimensionless central film thickness in starved and fully

flooded conditions can be expressed in general form as

H D* i
CyS _ xfm -1 .
- c (m* : 1) (6.6)
c,F ]

Table 6.3 shows how the ratio of the dimensionless inlet distance

parameter to the fully flooded - starved boundary [(m - 1)/(m* - 1)]
affects the ratio of central film thickness in the starved and fully
/H

flooded conditions (HC A least-square power curve fit to

»S c,F)'

the 16 pairs of data points

/H
[ =5, (ﬁ%{:li) . i=1,2, ..., 16
c,F i i

was used in obtaining values for C* and D* in equation (6.6).
For these values of C(C* and D* the dimensionless central film

thickness for a starved condition car be written as

oo 110-29
Hc,S - Hc,F(m* - i) (6.7)

By using a similar approach while making use of the data in table 6.3,
the dimensionless minimum film thickness for a starved condition can

be written as

0.25
= ﬂ_____.l.) (6.8)

Hmin,S - Hmin,F(;* -1

Therefore, whenever m < m*, where m* {s defined by either equa-

tion (6.3) or (6.4), a lubricant starvation condition exists. When
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this is true, the dimensionless central film thickness is expressed

by equation (6.6) and the dimensionless minimum film thickness is ex-

pressed by equation (6.8). If m > m*, where m* 1is defined by

either equation (6.3) or (6.4), a fully flooded condition exists.

The dimensionless central and minimum film thicknesses for a fully

flooded condition (Hc,F and Hmin,F) were developed in chapter 5

and are expressed in equations (5.56) and (5.33), respectively. i

(That is, Hmjn in eq. (5.33) is equivalent to H in eq. (6.8),

min,F
and Hc in equaticn (5.56) is equivalent to HC,F in eq. (6.7).)

The ratio of dimeiisionless inlet distance to the fully flooded -
starved boundary as obtained from Wedeven, et al. (1971), expressed
as (m - l)/(mw - 1) , is also given in table 6.3. By comparing
these results with the results obtained from the present thesis
[(m - 1)/ (m" - U], it can be seen that for group 1 the agreement
is excellent. However, the agreement in groups 2 and 3 is not as
good. A possible explanation for this difference can be than aa
approximate expression for the Hertzian deformation is used in the
Wedeven, et al. (1971) analysis. They indicate their equation
(eq. (6.5)) is only valid for small m* or more specifically
m* < 3, Ip group 2, m* = 3,71 and in group 3 m* = 5,57, Sipce
no such assumption is required in deriving equations (6.3) and (6.4),
they wouid seem to be more appealing.

Figure 6.2 shows the influence of inlet boundary parameter upon
central film thickness for the Wedeven, et al. (1971) results and
those obtained from the present thesis. From this figure it is ob-
served that the Wedeven, ot al. (1971) results give slightly higher
values of the central film thickness ratio of starved to fully flooded
rondition han thos obtained from the present resultg,

6.3 Contour Plot of Resuits

To explain more fully what happens in going from a fully flooded
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to a lubricant starvation condition, figures 6.3 to 6.19 are pre-
sented. As in chapter 5, in parts (a) of these figures, contour
plots of dimensionless pressure are given; and in parts (b) of these
figures, contour plots of dimensionless film thickness are given.
In parts (a) and (b) the + symbol indicates the center of the
Hertzian contact. The Hertzian contact circle is shown in each of
parts (a) and (b) by asterisks. At the top of each of parts (a)
and (b), the contour labels and the corresponding values are given.
In figures 6.3(a), 6.4%a), . . ., 6.7(a), contour plots of di-
mensionless pressure (P = p/E') are givea for group 1 of table 6.2
and for dimensionless inlet distances (m) of 4, 3, 2, 1.5, and
1.25, respectively. The contour labels and values are kept conctant
in going fron figure 6.3(a) to 6.7(a). In figure 6.3(a) a fully
flooded condition exists. Once starvation occurs the severity of the
situation increases as m is decreased, thus implying that the most
severe starvation case is shown in figure 6.7, where m = 1.25. 1In
figures 6.3(a), 6.4(a), and 6.5(a) a pressure spike is clearly vis-
ible, whereas in figures 6.6(a) ad 6.7(a) no pressure spike is
present. Note in figure 6.7(a), tte most severe starvation case,
that the contour labeled H does not extend =2s far to the left as
it did for the fully flooded pressure results shown in figure 6.3(a).
In figures 6.3(b), 6.4(b), . . ., 6.7(b), the contour plots of
dimensionless film thickness (H = h/Rx) are given fer group 1 of ta-
ble 6.2 and m of 4, 3, 2, 1.5, and 1.25, respectively. The film
thickness results shown in figure 6.3(b), . . .y 6.7(b) correspond
to the pressure results shown in figures 6.3(a)y, . . ., 6.7(a). The
central portion of the film thickness contours has become more paral-
lel as starvation has increosed (m decreasing) with the minimum film
thickness decreasing. Note alsc that the {ilm thickness contour

valces for the most severely stacved condition (fig. 6.7(h)) are much
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lower than the film thickness contour values for the fully flooded
conditions (fig. 6.3(b)).

In figures 6.8(a), 6.9(a), . . ., and 6.12(a), contour plots of
dimensionless pressure (P = p/E') are given for group 2 of table 6.2
and for m of 6, 4, 3, 2.5, and 2, respectively. The contour values
are the same for each of these figures. In figure 6.8(a) (the fully
flooded conditions) the contour for the largest pressurc {contour A)
is present, but as starvation occurs in figures 6.9(a), 6.10(a),
and 6.11(a) this contour is absent. Furcthermore, for the severely
starved condition shown in figure 6.12(a) both the A and B contours
are absent. This implies that “or group 2 the pressure peak present
in a fully flooded condition gets flatter as starvation progresses.

Figures 6.8(b), 6.9(b), . . ., 6.12(b) give contour plots of film
thickness for group 2 of table 6.2 and m of 6, 4, 3, 2.5, and 2,
respectively. The minimum :ilm thickness areas in these figures occur
on the axial center of the contact and move slightly to the right as
starvation becomes severe. Note from the contour values that film
thickness decreases substantially in going from a fully flooded con-
dition (fig. 6.8(b)) to a severely starved condition (fig. 6.12(b)).
As was found for the low-speed rosults, the central portions of the
film thickness contours become padrallel as starvation is increased.

In figures 6.13(a), 6.14(a), . . ., 6.i9(a), contour plots of
dimensionless pressure (P = p/E') arc given for group 3 of table 6.2
and for m of 6, 4, 3, 2.5, 2, 1.75, and 1.5, respectively. The
contour values are the same for each of these figures. Figure 6.13(a)
gives the pressure contour for a fully flocded condition; figure
6.19(a) gives the pressure contour for a severe. starved condition.
As starvation occurs the pressure profile flattens, since in figure
6.17(a) contour A is abuent, in figure 6.18(a) contours A and B are

absent, and ia figure 6.19(a) (the severely starved condition) ceon-
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tours A, B, and C are absent. Also from these figures it is found
that the distance from the center of the contact to the upstream
location of the largest contour value (labeled H) decreases as the
severity of lubricant starvation increaces.

Figures 6.13(b), 6.14(b), . . ., 6.19(b) give contour plots of
film thickness for group 3 of table 6.2 and m of 6, 4, 3, 2.5, 2,
1.75, and 1.5, respectively. 1In figure 6.13(b) (the fully flooded
condition) the minimum film thickness >ccurs to the sides of the con-
junction in two areas that are midway between the center of the con-
tact and the Hertzian circle. As m 1is decreased or the severity of
starvation increases (going from figs. 6.14(b) to 6.19(b)) the mini-
mum film thickness area remains in the axial center of the conjunction
but moves to the right, nearer the tiertzian circle. Note the simi-
larity among the film thickness contours of figure 6.7(b) (group 1
case), figure 6.12(b) (group 2 case), and figure 6.19(b) (group 3
case).

The dimensionless pressure (P = p/E') on the X-axis is shown
for three values of dimensionless inlet distance and for groups
1 and 3 of table 6.2, respectively, in figures 6.20(a) and (b).
The value of Y 1is held corstant near the axis of symmetry of the
conjunction. In these figures as a conjunction becomes starved (as
m 1s decreased) the pressure spike diminishes.

Figures 6.21(a) and {b) show the dimensionless film thickness
(H = h/Rx) on the N-axis for three values of dimensioniess inlet
dis.ance and for groups 1 and 3 of table 6.2, respectively. The
value of Y 1is held fixed close to the axis of symmetry of the con-
tact. In these f_gures, particularly figure 6.21(b), the central
region becomes flatter as starvation occurs. Also, in going from a

fully flooded conditiun to a starved condition the film thickness

decreases substantially.
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6.4 Concluding Remarks

By using the theory and numerical procedure outlined in chap-
ter 4, the influence of lubricant starvation upon minimum film thick-
ness in starved elliptical elastohydrodynamic conjunctions has been
investigated. This study of lubricant starvation was performed by
moving the inlet boundary closer to the ceanter of the conjunction.
From the results it was found that the leccation of the dimensionless
inlet boundary (m*) between fully flocided and starved conditions
could be expressed simply as

q0.58

or

70.56
Rx 2
*k = “ & —
W 1+ 3.34 b Hmin,F
B

That is, for a dimensionless inlet distance (m) less than m*, star-

vation occurs and for m > m*, a fully flooded condition exists.
Furthermore, it has been possible to express the central and minimum

film thicknesses for a starved condition as

0.25
H = H —-”"1)
min, S min,F\m* - 1,
where
Hc F fully flooded dimensionless ceatral film thickness
*
“min F fully flooded dimensionless minimum fiim thickness
m dimensionless inler distance
m* dimensionless inlet distance at the fully flooded - starved

boundary

Contour diagrams of the pressure and tilm thickness in and

oA
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around the contact have been presented for both fully flooded and
starved conditions. It is evident from the contour diagrams that
the pressure spike becomes suprressed and the film thickness de-
creases substantially as the severity »f starvation increases.

The results presented in this chapter, when combined with the
findings of the previous chapter, enable the essencial features of

starved, elliptical, elastohydrodynamic conjunctions to be ascer-

tained.
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CHAPTER 7
SUMMARY OF CONCLUSIONS

A procedure for the numerical solution of the complete, iso-
thermal, elastohydrodynamic lubrication protlem for point contacts was
given. This procedure calls for the simultaneous solution of the
elasticity and Reynolds equations. In the elasticity analysis the
contact zone was divided into equal rectangular areas. It was as-
sumed that a uniform pressure was applied over each area. In the nu-
merical analysis of the Reynolds equation the parameter ¢ = PHB/Z,
where P 1is dimensicnless pressure and H 1is dimensionless film
thickness, was introduced to help the relaxation process. The
pressure-viscosity analysis of Roelands (1966) was used. The numer-
ical co _ling of the elast city and Reynolds equations results .n a
converged solution for the pressure profile. This pressure profile is
then integrated over the computing zone to give the value of the cor-
responding normal applied load. This load is then conparcd with the
input lcd and corrections are made to the film thickness until these
rwo loads are in agreement.

The most importaant practical aspect of the elastohydrodvnamic
lubricated point-contact theory developed is the determinetion of the
minimum film thickness within the contact. That is, the maintenance
of a fluid film of adequate magnitude is extremely important to the
operatlon of some machine elements.  The minimum tilm thickness tfor a
fully flooded conjunction was found to be o function of the ellipticity
parameter and the dimensionless speed, load, and material parameters.
In the results the ellipticity parameier was varied from i (a ball-on-

plate contfiguration) to 8 (a contiguration approaching a line contact),

H
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The dimensionless ¢need parameter was varied over a range of nearly

two orders of magnitude. The dimensionless load parameter was varied

over a range of one order of magnitude. Situations equivalent to the

use of solid materials of bronze, steel, and silicon nitride and lubri-
cants of paraffi.ic and naphthenic mineral oils were considered in an
investigation of the role of the dimensionless material parameter.
Thirty-

four different cases were used to generate the minimum film

thickness and central film thickness formulas given below as

3 . = 3.63 UO.68GO.49w-0.073(1 _ e—0.68 k> (7.1)
min,F
ﬁc . 2.69 UO'67GO'53W-0'067(1 - 0.61 e—0.73 k) (7.2)
’
where the dimensionless speed parameter
T u
0
U == (7.3)
E Rx
the dimensionless load parameter
W= — (7.4)
E'R
X
the dimensionless material parameter
1
¢ =—E (7.5)
piv,as
and the dimensionless ellipticity parameter
=4
k = b (7.6)

Equations (7.5) and (7.6) can also be written in more convenient form

as

G =E'a 7.7

0.64
k = 1.03<§z) (7.8)
x

In equation (7.8) the ellipticity parameter is expressed strictly in
terms of the radii of curvature and thereby eliminates the common

practice of evaluating the elliptical integrals of the first and
sceond kind.
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The importance of equation (7.1) lies in the fact that it pre-
sents for the first time a satisfactory theoretical film~thickness
equation for elastohydrodynamic point contacts operating under fully
flooded conditions. The exponents on the various dimensionless pa-
rameters governing minimum film thickness in such conjunctions are
quite similar to those developed by Dowson (1968) for line contacts.
The most dominant exponent occurs in association with the speed pa-
rameter, while the exponent on the load parameter is very small and
negative. The material parameter also carries a significant expo-
nent, although the range of this parameter in engineering situations
is limited. Ranger, et al. (1975) have developed a central-film-
thickness formula for the contact geometry of a ball on a plate from
which an estimate can be made of the minimum film thickness. How-
ever, the work presented in this chapter 1s valid for any contact
geometry and proceeds directly to the evaluation of the minimum f{lm
thickness.

Perhaps the most significant feature of the proposed minimum-
film-thickness formula is that it can be applied to any contacting
solids that present an elliptical Hertzian contact region. ..y ma-
chine elements, particularly rolling-element bearings, possess such
geometry, and it is expected that the new minimum-film-thickness
equation will find application in such fields.

Contour plots of the fully flooded results have been presented
that indicate in detail the pressure distribution and the film thick-
ness. In some solutions, pressure spikes were in evidence. The
theoretical solutions of film thickness have all the essential fea-
tures of the previously reported experimental observations based upon
optical interferometry.

In addition to the fully flooded studies, the influence of lubri-

cant starvation upon minimum film thickness in starved elliptical




81

elastohydrodynamic conjunctions has been investigated. This study of

lubricant starvation was performed by moving the inlet boundary closer

to the center of the conjunction. From the results it was found that

the location of the dimensionless inlet boundary (m*) between fully

flooded and starved conditions could be expressed simply as

0.58

R 2
* = X\l 5
m 1+ 3,06 <b) HC,F (7.9)

or

0.56
Rx 2 -
* = -2
m 1+ 3.34 5 Hmin,F (7.10)

That is, for a dimensionless inlet distance (m) less than m*, starva-

tion occurs and for m > m*, a fully flooded condition exists. Fur-

thermore, it has been possible to express the dimensionless central

and minimum film thicknesses for a starved condition as

. © /m - 1)\0-29
Heys = Hc,F(m* Z 1) (7.11)
0.25
0 ~ m-1
Hmin,S = Hmin,F(m* - 1) (7.12)

Contour diagrams of the pressure and film thickness in and around
the conjunction have been presented for starved conditions. It is
evident from the contour diagrams that the pressure spike becomes sup-
pressed and the film thickness decreases substantially as the severity
of starvation increases.

The starvation results when combined with the fully flooded re-
sults enable the essential features of starved, elliptical

» elasto-

hydrodynamic conjunctions to be ascertained.
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APPENDIX - LISTING OF COMPUTER PROGRAMS

IMPLICIT DOURLE PRECISION (A-H,0-2)

DIMENSTION P2(95,20,3)

DIMFNSION DENSC(T60),VIStTL0) XMU(T6D),ZPRITHOD

DIMFNSION AUT601,RET60)CUTHD) fDLZETLOI XL CTLT D, XMITE0Y

COMMON NSAVE ¢MBUYNX4NY

COMMON AJ 4B1,P1,RHORXJRY XK PT4SA SU,T3,T2

COMMON W(7600,001520),5¢760),H(152014PR{1S20),PHI(TEDDI,PRSVITHD)
COMMON EP  HMIN,2C, 72D ¢ XN, YM

ELASTOHYDRODYNAMIC LUBRICATION OF POINT CONTACY PROGRAM

ALL INPUT OATA IS IN THE UNTTS OF NFWTON,CENTIMETER,SFCOND

INPUT

DLROSMZ100.C00
PHIMXZ100.00-10
MRJz=0

MRJ0=D

MRJOu ]

MBUNGT1

MPJQBT]

MAURZ(

JFNNZO
BRIANZ],.UDD
272-.13D0

NPQ=0

MHO (0

MHB8Z ]
oFLz.N0000010D
31:%.1415%926535900
ORF-1.600
DFL4Z1.06D0
DELYIZ.5D0
ROSMZ-100.0D00

CONVEX SURFACES ARE POSTTIVE
CONCAVE SURFACES ARE NEGATIVE

RAYZ1.1112800
RAX=1.111250C
RRXz1.012
RAY--1,18611500
xITAZ.3N0
GAZ1.9994707
PIVASIYURSR, TN
viso-.oocenul1100
T46700
UAZS50.0DGC
URZUA
ELPHAZS .B2T44D-6
RETAZ}1.683480-5
V1SFz.0000000063100
VAZIN.
VARZVA
Pz20.000
HOZ-.N0003644500

NODAL STRUCTURE INPUT

2nz13.000
XNZ4.N00

NXZHT

2¢=%.000

NYZ?#R

YMZ1et:00
NXYINX2NY
NY)-NX -1
NY1zZ2¢NY

NRI-NYX

READ(S ,99) ((P2{T,Jsel b alzloNX} JZ1,4NY1)
FORMAT(RDIO.Y)
DO 98 JI ]l NY!
DO 97 T GNYX
NITetJ-1)eNX
PRINYP2U]4d,yl)
CONTINUE
CONTINUEF

XJp Xl A
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e SV

85
Rls GRZ-GA
822 JRHOY:=Q
83z JAHNZ:D
R4s JBHZQ
'5 85¢ MAXS2:])
'y, Abe DfL2z.,000500
. £7s DEL3=.1D0
BR3 LS}
FO% MN1Z?
0% c
91e C CURVATURF SUM AND DIFFERENC.
L C
918 RXZt1./RAX)+(]1./RRX)
S4ue RYZ{1./RAY}ot]./RBY)
G5 RHOZRY+RY
963 GAMMAZ(RX-RY) 'RHO
C7e C
988 C ELLIPTIC INTEGRALS E AND |
99 c
1002 XKZSORT(2.000)
101= C
1C2¢ [ XK IS THE FLLIPTICTITY PARAMETER
10 3% C
1C4s 1 AKZSQRT(le~(1o/tXKe221))
10S» CALL Cft (F oE oAK,TER)
106% xJKISCRY((Z.QF-FO(l.‘GlNHA))Itltll.-GAHHA)l)
IC7« A9 XK-X JK
1082 XK =X JK
1099 IF CARS(A9).LT.DEL) GO 10 2
110 GO T0 }
1118 C
112» C SEMIMAJOR ANCSEMIMINO®D AXES OF CONTACT ELLIPSE
113 [
1lus 2 S?:ll.—llltn2l/GAO(l.-XXBot?)/GR
1152 TIZ03.00XK382)0F 3P ) /(PlakNHO)
1169 AlZtT1882)8%t],/3.)
117e B1zA1/XK
11Re Z1z.4%270
119+ 22:,592C/YNK
1c09 2372199
1219 2472782
1272% AAJZS2/PY
1238 TIZ H9RXS(R]10s82)
12us T22459%RY3(A]822)
125% WPITE (be3) RHOGGAMMA XK i oF
1268 3 rnnuAv(unDHo:,oxa.s.sx.euclnnnz.le.s.SI'ZHK:.nlb.s.SX.
1271s ] ?H(:,nlb.S.SX.ZHF:,le.bI
1oes (o
1720y C OTMENSTONLESS PARAMFIFR GROUPINE
1202 o
1319 (Pz2.752
1329 SMUZ.5% (URASUR)
133 SMVT.S9{VAsVE)
13us VISORT (SMUES24SMye0D)
1359 THETAZATAN(SMY/SHY)
136e GZEP/PIVAS
1379 UZVISOsRXsy/EP
131rs WL 2 PeRXSRY /(P
1308 WLZARZPORX/ (7 .0EPsA])
1409 APCHARZ1,/(1.4(2.9RY)7{ Y, 8RX )}
lule WNINAT?.DMU(ARCHI”CG‘U)".7MIIHL?O‘.07“)
' 1uoe DOWSONT2 o e58688.540UH.7 /L ZARSS. | 3
1438 NNXNCL:lc*#.!«l‘(u#*.ﬁ&)l(HL2‘0.073)
l4ue WPITLL6,190) HMINCL
1489 19C TORMAT(IH (BHHMINCALZ 4016461
j1 Tunn WOTTEC6,IP6) PONSON
147 106 FORMAT (1N v IBHDOMSON HWIGGINSON LINE CONTACT FORMUL A= ,N16.6)
P luPr» WRITE e, %0 HMTINA (Wl 7AR JARCHAR
1u9e SO1 FORMAT (LW .buuﬂ!nl:.Dlb.b.Sl.SNULIAP:.le.S.SI.7N19CHAR:.016.5)
180 Pl 4P/ (2,9P1sA)4B])
1tte WOITE (6,40 Al4R1,P1,FP
1t 29 4 FORMAY (gwl:.Olb.S.Sl.?Hﬂz.Dle.%.Sl.SNPNAl:.DIb.S.Sl.!HlA:.Dle.SD
1¢ 3¢ WRITEI6,5) Us THETA (G oML 2
1cue 5 FOD"AY(IHO.ZHU:.Olb.S.SI.bRYH(ll:.nlb.s.sl.2kr:.016.5.
1'%a i SYePHWI D1t .5)
1968 ¢ ‘
1579 C INITIAL PRESSURE AND FILM THICKNESRS
11 r3 C
1t us 78:1-/(l.0|?.‘RVlI(!.Oﬂll)
1400 WPIPSIRHOS®2) /[P ¢
110 WRITL(6,6) WP MO
i 1420 t FORMAT (4n WP 016e5¢5X 3 3HH0Z,0164.5)
: 16 Ve ClzvisE/viso
I3 leus Q2-EP/7196N8,4%268
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165
1669
1679
1682
1699
170»
171e
172%
173»
17us
175
176%
177
1789
179
18N#*
119
182%
1813
1Pus
1652
1P 62
1£7%
1RA%
1RO
190
161»
162
1639
1Qus
196
104¢
197%
1SR
19938
2003
2013
Piard
2018
2hue
R
2062
PR LS
2NRw
29
210
2112
212s
213s
2ius
21%»
21ke
217
218e
219%
220%
221
2272
2238
2240
2259
2269
227
278
229
23Ns
231
232
2311s
23ue
21%8
2l6e
231
23%Re
239e¢
2409
24 1e
242e
2u e
Jaue
2458
Pube
2410
24Bs

[a N al

[ala}

[a]

$e0
333

-

3ro

10

ny

L]

ing
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QRZfLPHASEP

C6-HETASEFP

CONTINUE

CALL SUREL (HOM,MNI1])

IF (M.EQ.P) LO TO 333

M0

MNL1Z]

dRITE(E ZSPUS PHIMX

FORMAT (IH LFHPHIMXZ,D18.5)
CONTINUE

VISCOSITY AND DENSITY

DO 7 NZPLNXY
DENSINIZL.+{Q%3PRIN)I/L1.9CE3PR(N))
VISINIZQI33(1.-(]1.90208PR(N)INSZ)
XMOIN)ZDENSINY/ZVISIN)

CONTINUF

RFLAXATION COFFFIENTS A,B,CoDyL AND M

CONTINUF
suMIz0.ane

00 9 J-2 My

DO 10 T=Z2,NX]
NZIJe(J-1)aNX
N1zZMel

N2 ZN-1

NIzNeNYX

IF (JeFTaNY) NIZN
RN =-NX

\ABS LITE LA ]
Y2IYMUINZ)
YIoYMOENT)
YusyMistng
YOoHIND)
YEZIHINY)
Y2oHIN)
YRAZIH(MT)

YO IHING)
YIOTY]1#CQRT LY )
Y11ZY2aSCRTLYe)
YI7TY30SGRTLYR)
Y13TvY4uSQRTIYS)
AINIZZ100T,8Y)9eY2)

RINIZZ7U04Y3e2 0Y4)

CUINYZZ38iY] oY 8Y /)

DLZINIZZ42(3.0Y3eY4)

XL 1ZU 00270 Y])eY2)0248(Y3eYl))

XL2-laS/7(YT738).5%)

XL 32238 0YINSL2,0Y6~U 3YTovb)eY ] tYS-U,0YT93.3Y0))
XLUZZ48IY]I20813,8YR-M 0Y24Y0) ey ]| 30lYA-U,.3YT0e3,9Y9)])
XUANDITXL LoXL28UNL 3exL &)

XM 12, 8UcB 18R /(LY TR81,5)

XM (YSODINSINIY-YOSDENSINZYISCOSITHETA)
XMIZEYRADENSINI)-YOSDENSINGIIOSINITHLTAY
XMIN)IXMIS{Z]OXMO4Z20)XNT)

CONTINUF

CONTINUFE

SumMin.on

MSUM9 - n

RFLAXATION FORMU: A

DO T0R Uz 2.NY

DO 309 T1:224NX)

MNZTetJ-1IONX

MNAZMNS]

MNR-HN -]

MNC MNeNX

JFUJTQeNY ) MNCIMN

MNDZMN-NX

ZPR(MNDIZPHIIMN ) -ORFO(PHTI LMNI S {XMIMNI-AL{MNISPH] (MNA)-BIMN) OPH] {HND) -
SCAMNISPHTIIVMNR ) -ULZ (MNDIOPHTI(HNCI D/ NL IMN)

1F (2PR(MMILT.PHINY) GG 10 55D

MOURG-MSUMYe )

ZPRIMN,; PH]MYX

CONTINUT

IF (ZPRIMNLLEDL) GO TO0 509

YIRI(OPRIMNI-PHIIMN)I}/ZPRIMN)

SUMTZSLUM]eARS(YLB)

GO 10 13RR

2PR(mN) D 00U



2890
250
251»
252
2539
25%40
2%%e
256
257
258%
2%9s
260
2¢1e
2629
2638
26he
265
2669
267
260
269
270
271»
272e
213
2T4s
27%
2768
277
278
2798
2KNe
SR1s
2R2e
2P 3
?Rus
2P 5%
2Hb0
2P 7
2R
2R9s
290s
291»
2929
29 3e
2949
2959
2969
2917
20ns
299
1000
Inle
102e
Inte
INus
305
INke
307
Itps
30 9
310
Jile
312
313
Jlus
3159
Jlbe
3179
Il N
3119
312Ne
321s
122
32 3¢
3280
1289
3260
3270
32ne
329e
33Ce
331
332e

[a e Nal

[a a1

3rp
3neg
3INR

310

4R0

316
ns

4o

17
16

500

191

PHIIMNIZZPR(MN)

CONTINUF

CONTINUE

CONTINUE

MAUR-MAUR ]

IF (SUMI.LT.DFL3) GO TO 3)1
6N T0 307

VISCOSTITY AND DENSITY TTERATION

SuM2zn.nnp

WRITE (64480) MAUR ,MS(MY
FORMAT (1M ,SHMAUKZ 18 ,5X y6HMSUMO = IR}
MAURZN

PsSumzn,.ppn

DO 31% J:z2?,NY

DA 316 1:22,NX)

NZTe(u~-1)oNX
PQ(N):(PNI(Nl/(HiN)‘ol.Sl'(POSH-l.IOPDSVlN)IIDOSﬂ
PRSVINITPRIN)

PSUMZPSUMSPRIN)
DINSNZI-OGOSOPthl)/Il-OOetPRIN)l
VISNZQI#8(].~(1.4028PRIN))S#2)
XMUNZDENSNZVISN

YOI (XMUN-XMUIN) ) Z7XMUN
SUM2-CUM2+ARS (Y99}

DENSIN) ZDENSN

VISINIZVISN

X™UINIZXYMUN

CONTINUE

MNLZL

IF (MH9.EQ.1) GO TO 4S9

CALL SURGLINO,M,MN1)

CONTINUE

JENNZUENNeL

WRITE(6,810) <uym2

FORMAT(IH (SHSUM2) ,016.5)

IF (SUMZ.LT.DELL) GO O 13
IF(MAXS2.6T.300) GO TO 985y
MAXS2-MAXS2+¢]

GO0 1o 360

APLTIED NOPMAL LOAD

CONTINUF
waxez:y

IF(FHO.EQ.1) €O 10 4D
WRITE (6 ,4PL) UFNN

FORPATIIN (OHUENNIFER:Z,,18)
JENNZD

Quasd..opDd

DO 16 31:2,NX)

QuUIz2.000

Qu3IzD.000

LIS ¥ rd

ITRMIIMeTN

IFCIBMANELT) QUIzL.0ODP

0on 17 J:z2,NY

NZlet(U-1DreNX

QU3IZQUIPR(N)

QuUuCQUEeQuUisQU]
PRAR-U,.SEPSALOBLI2QUN/ (3,8.C82D)
PCHECHZ2 ,0EPSALSRLSPSUM/ ((CHID)
NRITL (6,5%00) PRAR ,PCHICK
FORMAT (1K sSHPRARZ JD16.5,5% THPCHECK: 4D16.5)

NfW CONTRAL FILM THICKNFSS

IFCUENNGLT %) XJENNZ,. 50D

IF LJENN .G, 8) XJENNZ 600

IFLJENNLGTLID) YJUTNNZ 800

IFLUENNGGTLIS) XUENNZ 900

IFUARSIHC) LY. 1.D-8) HOZ-NO

1F (HOLLT .0, ) HOBAR-HOOIXJLNNSI L o-XJUFNNIS(P/PRAR)SO277)
1IFUH0.6T,.04) MOHAD:NOOOIJ(NN'€l.~lJINNIOQPBARIP)toIIIP
28UMSZ (P -PRAR)/P

SUMTIZARS (25UmY)

WPTTE (6o1R) P PRAR (HN,HCBAR ,SUM]Y

FORMAT (1M .7NP:.Ule.l.SI.suPsAn:.olb.a.ﬁl.!uun:,oto.u.
} Hl.ﬁuuosnﬁ:.Dls.a.ﬂl.SnSUHSL,blb.Oi
IFESUmM3I. LT .NILZ) GO 10 19

HNZHORAR

CONTINUE

DO &4D Uzl ,NY

87




t312¢
I3us
ERAY ]
Tlke
37
32n0
7399
Iuns
ALR R
1409
Juls
Iuye
Iyce
46
478
34Re
3493
1N
Tl
352
353
Ity e
ltge
A Y
LAY 2 ]
ISRe
1598
3608
161
3¢ 2
3t 1e
Jbus
Je%e
3the
367
3688
3499
*0e
3171
1729
3173s
3740
ARAY ]
37¢e
1778
17Rs
3703
180s
Ifle
152
18 s
TRys
Ikce
LYY
IF e
e re
29
3ons
191s
152s
316 e
Icye
6%
Che
Icre
TOne
159g
a'rs
4 le
4roe
up g
“ue
4t se
Wnes
4i 79
YA
unos
“ine
“lle
Wlre
“itle
Ylue
“lts
Wl ne

4y ]
qun

mn

AR

692
690

69%¢
694

654

me
"1

AN
4Ny

409

LB A

4ng
4Ny

inl
0o
ins
Iy
3ny,

REEKY

[ 3]
[N

59y
(xy

ST IREET AR e T

88

NGO 441 1:p,Nx
NIZTetUu-1)aNY
NlNl;:NGoﬂlt(%(NSloulns)l
PNI(N’)ZPR(NJ)‘IN(NSI“I-Sl
CONTINUE

O 10 3Ing

CONTINUF

IFCURHLER. ) e 10 700
JAMZ]

OrLlz.sng

60 Tn 76y

IF (URHOZ.6G. 1) GO0 1C 1%Q
JRHQZ 2]

PFL1Z.20%

G 1o 7¢c

IFUURNUY oFQ.]) GO 10 756
JRHCY ]

OFLY:.106 b
CONTINUF

0O pel groy,my

0 692 1-1,Nx

NZTeNXs(J-1)

PTG 1)ZPRUIN)

P20 43Uy 2)2HIN)

CONTINUF

NO €94 g ,NY

PO 696 1.1, ,Nx

JITNY ey

J2INYe ] -y

D?l].Jl.l):PR(I.J?.ll

P?(I'JI.P):P?(I,J?.?)

CONTINUE

PUNCH 654, l((P?(].J.I).l:l.u!l.J:l.NVl).KZl.?)
FORMAT(RIIN .S )

HOZHOPAR

00 131 JT1GNY

0o 10> [:14Mx

NIzTetu-dranx

N(N!l‘ncoﬂx°(\(N!l0U(M3))
PHI(NSI:PD(NSIO(N(N!)OOI.b)

CONTINUF

6N 10 3Inn

CONTINYE

CONTINUYF

WRITE(6,409) EPRIN) G NZT,T00)

FORMAT(IH $ZHPR (/TN (1M W10D13 5,211

WRITE tbauln) IPHIIN) 4NZ ), 700)

FORMATY (1w vHPHG /7, TO (1M 210D13.5,71)

WRITE (6,403 (HIND JNZE,T00)

WRITLt6 404} ENINY JNZT L2000

WRITE (6 ,u0%) TSIND G NZY,T0L)

FORMAT (]H LUV L IRTY Wi0D13 8,7}

FORMAT (}n [RILRY N I T B Y 300138,/

FORMAT ()n RLAYES LIBTY 2100138,/

WRITF s 317 tnr~3c~1.~:1.7nn)

FORMAT (1M .TMD!NSIYV.I.7011H »10013,5,701
MRITEt6,41A) fVISINIGNZL iGN

FORMAT (11 .QNVISCOSIYY.I.IO(IN JAN0D13.8,7))
WRITE (&6,301) tAlNl.Ntl.luOl

WRLITE (e, 102 CRIND G NZ T, 700

WRITE (¢,301 (CINY AN, 200)

WRITE L, 30y (ULICN).NTI.IDOI

WPTTE L4, 30y (XLIND G NZF 2000

WRITE (4,308) (XMINDY G NZY L, 260)

FORMAY (1 n v IHA G/ TUL N 2JLD1S.%,7))

FORMAT (1 e IHP G/, 7001 M v 1LD13.5,70)

FORMAY (I n 2IHC 2,70t 1M Ul 138,70

FORMAT () lenn’QTU‘l“ vIL013a8,70)

FNRMAT (1 1 RLINYEIR NI w10L013.8,70)

FORMAY (1 LY IS TR vIWD13.%,70)

e st K

DO S o1 NY

no ¢4y T-1,Nx

N lenxo(y-}1

LNE S VI B N -T- YR
POUTaUe2) HiN)
CONTINUF

0n wow 4o, Ny

0% 699 T 14N

JIINYey

JINYe Y -y
P‘IY.JI.IDLP:tI.JC.li
Poer,a) ..‘)J'.’II.J.’.?)
CONY INGE
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4]17s PUNCH 652.(((92(1.J.l).!:l.Nl).J:l.NV!’.III.?D
“lme 652 FORMAT(ADID.S)

819 c

4209 C FLOW RATEL ANALYSIS N
421 [

Lrard ] N0 T76 J:z2.NY

423 NN 777 1:=2,NX1

424 NZTet -1)eNX

425 NIzINe)

“2es N?2ZN=-)

“27e N3ZNeNX

wu2he IF (U.EQ.NY) N3=N

429 N4 =N-NX

430 PORXZ.S8ZDS(PP(N]))-PR(ND))

“]e PRRY- ,&$87C8IPRIN3)-PRINK))

432e QUIZVSDENSINISHINISCOSITHLTA)
4ils CYI-USDENSINIOHINISSINITHLTA)
434e OXSZDFNSINISIHINIS®Z) /{12.9RXeVISIN))
435e OX2-QXSepPLRY/ZF]

436 QY2ZJIXNSOPCERY /AL

437 QX =QoXx1-9x2

43pe Qv:=0Oyv}-Qv2

419 QrOoT-Q0XxeQy

&40 CTVISORT(QOX®®2eQYe02)

LTRE] P2(1,J,30:2Q1Y

ay2e QANCZATANIQY/OX)

Gy le WRITE(H,778) N,QTV,QANG

Nuae 778 FORMAT( 1IN v ZHNZ g T 104SX ,8HUTY =4 D1 3.5,5X ,SHOANGS,013.5)
4458 MRITELGL,779) OX1,0X2,0Y1,uY2

Nuhse 779 FORMAT (1M .MHOXl:.DlS.S.SI.CMOX?Z.DI3.5.5!.0“0']:.0]3.5.51.
“ule 1 8HOY2:,D13.%)

Quns WRITE(E,7R0) QT0T,QY,0X,PGRX ,PGRY
au9s TRC FORMAT( I .SNCIOV:.nl3.5.5!.SHOV:.Dl3.5.5!.!"0!:,0!3.5.5!.
aShse I SHPGRYXZ,013.5,5%,5HPGRY=,013.5)
4t 777 CONTINUE

4529 776 CONTINUC

453 406 CONTINUE

a%ue D0 659 1:],NX

4% b0 658 JZ1,4NY

4Ses JIZNY ey

45 7e J2INYe) -y

y'my 658 P2(I,J1(312P211 ,u2,3)

u%9e 659 CconNTINUE

4e0e PUNCH 65640 UP2UT4de3) gl=] NX)yUzlyNY])
uels 6%¢ FORMATLANID.S)

Uer2s DFLIZ.S%D0

4 3e NLTTEN]

4bus IFI(MRU.FQ.1) GO 10 970

atse LLINES]

Wb 2D0:26.,0N0

LI wE 4 XNZ1.500

L YX.1) NY =)

(TXT] HOZ-.70GCOYADD

WIDe ROSM-POSMe200,.,000

L71e GO 10 97%

wl2e 970 CONTINUTI

47% IF(MBJ0.E0.1) GO TO 979

W74 Lo LN |

[RAY ZNzZ28.000

“lee AN 142800

7. NYZ#Y

LR AT HOZ-,7000400

«79s FOSM-POSMH2N0.000

wAlle 60 10 974

“hle 979 CONTINUE

“p2e IT(BUQU.FQ.1) GO T0 101

hule LN |

4r4e Gh 10 974

apce 121 CANYINUT

Shéo 1FtPHJQ6.Q.1) GO Y0 102

LR »AJ0L" )

“pde 60 10 §7%

48 0s 102 CONTINUF

L of ] IF(MA0CA.TQ.)) GO 1O 103

49 MR JQE-)

492 Gv 10 97

493e 950 CANTINUCI

A%y ROSMROSHINLROSM

895 WRITI(6,969) ROSM

4980 SA9 FORWATLIN (CHROSIH: ,013,%)

497e LIS APAS]

9% 60 10 300

(T 17] 103 coantINUE

&rne sioP

SC1e END

IND OF COMPLLATION NG DIaAGNOSTICS,
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1e SURROUTINE CELIRIR2,AK,ILR)
2 IMPLICIT DOURLE PRECTISION (A-H,0-7)
3 1FRZ0
ue ¢ TP ST MoDULUS
e C
b GFOZ).-AKSAK
7 1FINL011,42,6
re 1 IfR-1
9 RF TURN
ite c
11 4 SFT RESULT VALUEZO0YFRFLOM
12» c
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1ue R2-1.000
159 RFT URN
16 c
179 q COMPUTFE INTECRAL
12 ¢
199 & WoGFO 5 -
20 ANZ1,.40GF0
212 AN1Z2.000
79 GFO-SORTICED) i
2ts AR1-1.00D
Tus Aaz1OP0
o5 7 W-wWesARS(EQ
RS W WewW
27 AAZAN
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2C» ARPI-FOeAR]
irs ANTW/ZART AN
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l?. c -
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148 C
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e GEOTGROeGED
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17e C
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2le X
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Jhe MUY -YH)es
PAX ] LU oYX )ee,
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TABLE 3. 1. - INPUT CONDITIONS USED FOR TOMPUTER EVALUATIONS
[Effective elastic modulus, E', 21.97 MN’('IHZ (3.187-10° psi); radius of curvature ;
for solid A, Tax = rAV = 1111 em (0. 4375 in. )] i
Condition | Dimensionless | Normal applicd Ellective radius Radius of curvature for seiid
load param- force. -
eter, F Rx “‘\' Yix rI}y
W N bt cm in. em in. “m in. om in.
1 0.51i%-107" 8. 964 2 1 0.555 L11H) 0 4375] 1.1110, 4375
o5
2 .5105-107° 896. 4 200 55 1.111 L4375 1.111| . 4375
3 L2102 10"7 §. 0064 2 |1.284 5055 | 15. 00 5.906 | -8.260(-3.252 |-1.20n]- 4723
o
4 .2102-1077 #96. 4 200JL2H4 .5055 115,00 5.906 1 -3.260]-3.252 |-1.200 ».4725‘

TABLE 3.2. - CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONG THE SEMIMA.JOR AND
SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO THREE EQUAL DIVISIONS

AND CONDITION 1 OF TABLF 3.1 PREVAILS

Coordinates Pressure. p Ratio Flastic deformation, w Ratio Total separation, 8+ w Ratio
X Y N ('mz psi R1 ; cm in. Hy S cm in. Ra

L 7a toooss1-10%] 61235 10%] 1000 [0.0856-107%] 0.0337- 1077 |35.33 |0, 0ss1-107Y] 0. 0347- 1072 0. 7910

Sa L0745 1080 ' L0759 . 0299 6.275 | .0881 . 0347 . 9363

112 | 0462 L0670 0577 L0227 1.830 | .0892 . 0351 1.984

i3 lo 0 . 0366 0144 L6021 . 0970 . 0382 1.787

] 153 L9999 | L0269 . 0106 L2720 L1265 . 0498 . 8633
174 L9999 | . 0216 . 0085 L1468 | . 1697 . 0668 . 4847

194 4998 | 0183 L0072 . 0882 | .2243 0883 [------

214 L9998 | 0157 L0062 L0572 | 2896 L1140 | -ee-es

23 | L9997 | L0137 . 0054 . 0392 | 3653 1438 fo-oo-

251 | - -9996 | L0122 .N048 .0282 | .4511 B0 i {: T [

27 l L0995 0112 . 0044 L0207 | 5469 L2153 [-ea-ee t

293 L0994 | L0102 . 0040 L0158 | L6525 2569 fe-eo--

9b | 7a L0745 . 1080 1,000 L0759 L0299 6.279 | . 0881 . 0347 .9363

11b L0462 D670 1.000 L0704 L0277 1.832 | .0892 . 0351 1.387

13b 0 0 1.000 . 0366 L0144 L6027 | 0970 . 0382 1.787

15h L9999 | . 0269 0106 L2723 1262 . 0497 . 8617
s 17b 9999 | L0216 . Q085 L1469 | 1694 L0667 . 4849
196 L4998 | . 0183 . 0072 L0883 | .2240 L0882 |------
§ 21b L9998 | L0157 L0062 L0572 | L2893 L1139 e
23b 9997 | . 0137 . 0054 L0392 | 2650 L1437 feee--s

x 25b L0996 | L0122 . 0048 L0280 | . 4509 B L S .

27 L0995 | L0112 . 0044 L0207 | 5464 L2151 |ee--e-

291 0494 | . 0102 . 6040 L0153 | . 6520 L2567 f-e---.

RFPRODUK IRIT.iTY O LHE
ORIGINAL PAGEH o DPOOR .




TARLE 3. 3.

- CHARAC(

SEMIMINOR AXES WHEN THESFE

Dressu

e,
S
oo
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174 {0 0 L0374
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230 000 00k f
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350 J gaut L n1yy ’
37h 04945 f 010% i
34 e Y - J_.f“”ff i iY"”Jh,_ LW
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"TERISTICS OF THF, COMPONENT

AND CONDITION 1 QF

Rutio

S OF FILM THICKNESS ALONG THE SEMIMAJOR AND

AXES ARE DIVIDET

TABLE 3.1 PREVAILS
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TABLE 3.4, - CHARACTERISTICS OF THE COMPONENTS OF FILM THICKN =S ALONG THE SEMIMAJOR AND
SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FIVE EQUAL DIVISIONS

AND CONDITION 1 OF TABLE . 1 PREVAILS

m()u n I i lastic Tlu'\um.uum. W Bt Toral separation, S . w Ratio i
‘- W I
e Y N n-mg T Psi “l \ om in. ”i’ \ g n. RB
I T _L
1| 1l {0 0567 i07| o 1255 10"} 1. 000 0. 0864 07 0.uz40 107 | gy 05 'n.(mn 1673 0.n344- 1073 0. 0791
134 0832 L1206 ‘ CO0HZH L0326 14,01 L0HTY 0344 .0378
150 0754 1093 059 0299 6. 698 | 0874 .N344 . 0757
174 L0620 0849Y 06565 L1254 3. 008 L0874 . 0344 . 1921
19 0372 0539 L0521 L0205 1. 459 0479 0346 L7276
210 |0 " 0944 L0151 TS L0914 L0360 ool
23 [ f WY 0310 .Mm22 AT 1052 0414 -
; Za | ; ! j ' [T 0102 : 26560 124, Podg
27 : 02249 I i 1104 1494 .N588
24q ‘ 0203 00O |owa2| 1 o2 |l
31 J L9095 0143 0072 | oonael orng L0831 | aallo
334 T T 065 | omne 0956 | eeenos
350 ! M 152 NG00 ; LO0B56 : L1135
3T ‘ L9997 10140 L0055 C04400 3825 1309
39 L9997 1 o1an L0051 0355 | 4805 BRT VT S R
410 ] [ S4996 | 0122 SO0 L0290 432 B0 /4] IR [
43 | L9996 ) 0114 0045 02400 qu6g W7 e
45a I 995 L0107 L0042 L0201 5456 2148 ool
470 J ¢ L0995 | L0102 0040 SO1T00 6081 22394 ool
J 49a L9994 | ooyt 003y L0145 ) 6739 J265% 0 Lo
1Bb 1 | oms S1206 1. 000 L NK24 0326 19,02 COHT4 0344 . 0408
15h L0754 L1093 AT L0299 6. 702 . 0874 . 0344 L0757
17h L0620 L0894 0655 L0258 3010 | 0sTg L0344 .1921
19h L0372 L0531 L0521 L0205 1,460 | ouin . 0346 .7243
21h 0 0 L0384 L0151 L7202 414 . 0360
23h L9949 L0310 L0122 L4174 1052 0414
25h L0262 L0103 L2660 1247 L0491 ool
27h . 0229 . 0090 L THOS | L1494 L0588 [ a--aas
29 i L0203 L0080 1283 1781 L0701 aaaall
31 L9995 | L0183 L0072 L0945 L2108 BN T0 R (.
43h LUYYE L0165 L0065 L0TIT| L2477 L0975
35h - 9998 L0152 . 0060 C05661 . 2680 L1134
37h L9497 . 0140 L0055 04411 ase2 B KT % N
39h L9997 L0130 L0051 03551 3802 L1497 oLl
41b LY996 | 0120 L0048 L02490] 4315 S1699 oL
43h SO995 0114 L0045 Lu240] L 4R6T B 1T 1 RSO
45h L9995 | o107 L0042 0200|5453 AL Y R [
47h L9995 | 0102 L0040 L0170 L6078 L2392 ool
aon | ¥ { L9994 | . ong7 | 003y 0145|671 L2851 | a.al
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TABLE 3.5, - CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONG THE SEMIMAJOR AND

SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO THREE EQUAL DIVISIONS

AND CONDITION 2 OF TABLE 4.1 PREVAILS )
mrdinul(vs Pressure, p Ratin |} Elastic deformation, w Ratin Total separation, 8 . w Ratio
X Y N ('mz psi ”1 :1‘ om in. RZ : cm in s
™ |74 10.3953-10°0.5734-10%| 1,000 |1, 444 1078] 0. 7261 10°3 35.33 | 1.897-10°%] 0.7467-1073] 0. g130
9a .3457 .5014 9998 |1.639 6451 6,275 | 1.900 1479 1. 088
113 | .2144 . 3109 L9994 [ 1,243 . 4492 1,830 | 1,922 . 7565 3.102
132 {0 0 L9989 | L7861 . 3095 L6021 2,092 . 8235 4. 897
154 L9981 | 5824 L2293 27200 2,723 1.072 4.170
174 L9972 | | 4676 L1841 1468 3,653 1,438 3.924
192 L9960 L3917 1h42 ! BUL2 1 4,631 1Y 7 (. i
21 L9947 13376 1329 L0572 €. 93k 2,456 ooo.o.
230 L9932 | L2967 L1168 03921 7. 869 3,098 ool
253 L9915 | L2647 1042 D288 5. %8 3,826 | ceeae-
2Ta 9896 | . 2490 L0941 L0207 11,78 4.638 oo
LR 0874 | 2179 . OH58 L0158 14. 06 5.535 oo
N 9b | 7a . 3457 L5014 9998 11,639 . 6451 6.279 | 1.900 . 7479 1. 086
1ib 2144 L3109 L4994 |1,243 L aRY3 1.432 | 1.922 1564 3.104
13h 0 0 L9989 | 7861 L3096 K027 2,092 . 8232 4.896
15b L9981 | L5824 2294 L2728 20723 1.072 4.164
17h L9972 ) 4676 1841 L1469 3,653 1.438 3.922
19 9960 | L3917 1543 L0883 | 4. 429 1) S R
21h : L9947 | 3317 1329 2| 6,236 2.45% | ---._.
23h L0032 | 2467 C16E 03921 7. 464 3.096 | ooo--
25h L9915 L 26dy L1043 p2e0l 9,710 R % B .
27b HE T R TR 0442 L0207 11,77 4.635 | ...
29h i ";'f“_"‘_i_J,;?,lfi___, LOESY L0154 [14.0 5.501 |-

TABLE 3.6. - CHARACTERISTICS OF THE COMPONEANTS OF FILM THICKNESS ALONG THE SEMIMAJOR AND
SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FOUR EQUAL DIVISIONS

AND CONDITION 2 OF TABL Y 4.1 PREVAILS

s

5

m;‘m‘_ T Ratio ‘E];i:‘slﬂl;'ﬁ(ll‘rfl>I‘]ll.|ll“)l. w Ratio Total separation, 8 . w Ratio
X Y N ('mz psi Rl : cm tn. ”2 : cm . “3
M foa 10.4004-10%) 0.5007 105] 1000 |1 wea 1078 0 144 % e e | owe2 107 0, ran 1077 0.7391
M | L4736 L5419 L9999 | 1. 746 6RT4 11, Hy 1. 893 L1452 . 8450
1 | 3134 L4546 L9997 | 1,514 562 3,965 | 1. H96 7465 1. 180
15a | 1902 L2759 co904 | 1. 197 4633 1603 | 1.911 L7525 2.748
17a 1o 0 L9099 | H14 L3206 662 ] 2oty B Z T
19 0984 | Basn L2500 a2 427 U555 | ool
21 99T | 526k L2070 L2106] 3. 023 PR R IR
234 9970 | . 4508 1778 CLa6| a6y 1. 484
264 9962 | ap42 1652 C0920 4,653 1. 832 e
27 Jaus2 | a0 132 L06601 5. 669 2,282 ...
20 || f co042 | a6 1046 L04HT | 6. 810 2660 [a.o.
da || L0930 | 2083 1135 L0470 K072 P8 L R
|| L0017 | L2647 1042 028K [ 0. 450 3,724 e
3% L9903 | 2446 063 L0228( 10, 97 TN ¥ S
¥ 37 JOBKKE | L2276 L pwo 0184 12,60 4950 ...
LIRS N2 2126 ] 0837 L0150 14,34 5647 oL
1o |9 AT L5419 L9999 | 1, 746 | owra 190 | 1 %03 L7452 B450
13 3134 L4546 0997 | 1504 I 590 X968 |1 ko6 L7464 1178
10 1002 2759 9.4 {1177 L4634 1604 | 1911 7523 2.747
17h i 0 Jauny | w143 3207 CETOR] 2 01k {7 VI I
b ! 9084|6350 L2500 4647 2 426 11T S
21 ! 99T | 5onk 071 C2V0E[ F.o20 1189
230 ’ 1 cenTo | an0g 1773 Jaaul| oater 1483
R | ‘I ) 0062 | auge 1953 0827|4651 1V Ralt .
2h i : ‘ | L9952 L35t RS LOBELT 6664 22300 ool
201 : j 0942 | 31en 146 S04un | 6 pon 2679 e
L il ! Swasn L 2 Han 037t soes RET B
RRTN I ! St | ongg 1042 0266 | u 464 KR B
sy | ; | 0a | 2gan ana L0224 10,98 4315
:m.' f TR AL 089 T RERT 4,955
F L.m)- l J “ J ‘ LRt Lo .08 MO R F IR wedd o b
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TABLE 3.7. - CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONG THE SEMIMAJOR AND

SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FIVE EQUAL DIVISIONS

AND CONDITION 2 OF TABLE 3.1 PREVAILS

Coordinates Pressure. p Ratio Elastic deformation, w Ratio Total separation, 8 . w Ratio
hYY T N :'n12 nsi Rl ‘::— ~m in RE ‘:\ iy in. s
1 113 [0.4027-10%) 0.5840-10%] 1,000 {1.862- 107 [ 0. 7320 1073 | 99 05 1.380-1073 0. 7403 1073 0. 0287
133 | .3859 L5537 L9999 |1.787 7034 19,01 1. a6t L7404 L 039n
155 | 3499 .5075 9998 [1.637 L6445 6.698 | 1.881 .17407 .N854
174 | .2876 L4172 9996 |1.414 L5566 3.008 | 1.544 1417 .2558
193 | .1726 L2503 9993 (1,124 . 4427 1.459 | 1.895 .46 1.224
213 |0 0 L9990 | 4252 324y L7195 1,972 Bk 1Y I
23a 9986 | . 6662 .2623 4170 2,264 8915 oo
253 .0981 | 5646 .2223 L2658 2,690 1.059 | aeea-
27a 9976 | 4917 . 1936 1804 3.214 1267 | aaaeos
20 9970 | . 4361 1717 C1282 | 3. 540 1.512 | eaan-
31a 9963 | .3922 . 1544 L0944 | 4.547 1,790 aoe. o
333 . 9955 | 3566 . 1404 L0716 | 5.339 2,102 | aemans
353 L9947 | L3272 1288 56 | 6,213 2,446 ...
37a 9938 | .3020 1189 L0440 | 70165 2821 |eeaaas
394 .9928 | .2807 1105 n355 | . 197 3.227  feeeaa-
41 L9918 | L2621 1032 L0290 ] 9.307 1664 | --oo--
431 19907 | .2455 L0964 . 0240 |10. 49 4130 e
457 L9895 | L2316 L0912 L0201 [11.76 4.620 |-
4Ta l { L0833 | L2189 L0862 L0170 (13,10 5157 feeeeas
494 L9870 | L2075 0817 0145 |14.52 5715 eeeees

13b [113 | . 3859 .5597 9999 11,787 7034 19.02 1. 881 . 7404 0412

15b . 3499 .5075 L9998 |1.637 L6445 6.702 | 1.481 140t L0854

17h .2876 L4172 L0996 [1.414 5567 3.010 | 1. 86q L7416 .2557

19h . 1726 . 2503 .9993 11.124 . 4427 1.460 | 1.4095 L1460 1.224

21h 0 0 9990 | . 4252 .3249 L7202 ( 1,471 JTT61 el

23h L9986 | . 6662 .2624 L4174 | 2,263 11 D A O

25h 9981 | .5646 .2224 L2660 | 2. 687 1.058

27h 9976 | L4917 1936 J1805 | 3.216 1.266

29b L9970 | . 4361 1718 L1283 1 3. 438 {009 5 U .

31b L9963 | L3922 . 1545 0945 | 4.544 1789 feeeao.

33b L9955 | L3566 . 1404 L0717 | 5.337 2.101

35h 6947 | 3272 1248 L0556 | 6,208 2. 444

37 L9938 | .3020 1190 0441 | 7,160 2,819 feoo---

39b .9929 [ . 2807 1105 L0355 | w192 3.225 ...

41b L9918 L2621 . 1032 L0290 1 9.299 3. 661

43b L9907 | . 2459 . 0969 0240 110, 49 4.128

45b .9895 | .2316 L0912 L0201 [11.75 4.625  |-.....

47 L9883 | 219 . OB62 L0170 11309 5183 [-a--ann

49h COBTO | L2075 LOM1T L0145 |14.51 5.711
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iod CHARACTERISTICS OF THE COM PONENTS OF FILM THICKNESS ALONG THE

SEMIMAJOR AND SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO THREFE

EQUAL DIVISIONS AND CONDITION 3 OF TABLE 3.1 PREVAILS

Coordimtes | IT\<~Q1¢7|> - ‘l-“l.lhl'n";i}'-m;(ﬁlm.
T N 1‘1112 ps1 em .
L o.00245 10%]0.0360 16% [0, 039y 1073 00157 1077
9 L0217 L0315 0338 0133
ta | 0134 L0145 0210 L0087
134 |0 0 L0102 . 0040
15a L0071 . 0N28
174 0056 .0n22
19a 0046 L0018
214 0038 0015
234 . 0033 0013
254 . 0030 L0012
2Ta L0028 L0011
203 N7 E . 0010
ob | 7a L0217 0315 L0871 . 0146
11b L0134 L0195 L0315 . 0124
13b 0 0 . 0249 . 0094
15 L0211 . 0083
17h L0183 . 0072
19h . 0163 . 0064
21h . 0147 . 0058
23b L0135 L0053
25h L0124 . 0049
27 L0114 . 0045
295 { L0107 .04z

TABLE 3.9,

SEMIMAJOR AND SEMIMINOR AXES WHEN THESE ANER ARE

Hatic ] Total separation. S . w | Ratio
"2 :,\ cm in. R3
35.42 [0.0409 1073 0. 0161 1073] 1. 030
1.662 | 0409 L0161 1.135

1132 | o414 0163 4.030

.2705( . 0480 L 018Y 7.494

L1281 0651 .N272 4.993

L0591 L0943 0387 4.350

.0351| . 1339 L0527 | aa-a-

L0225 1760 0693 (oo

L0154 L2043 (I A

L0109 | 2749 IR | aeaoe

L0081 . 8396 1337 | ea-e

00611 . 4067 601 oo
9.205 | . 0411 L0162 L2171
3.210 | .0414 0163 2,273
1.340 | 0434 0171 2.820

L6966 0511 L0201 2.544

4114 . 0630 L0248 2.517

L2638 0782 L0308 fooo-.

17941 0970 L0382

J12761 1189 L0465

09401 1433 L0566 .. .

0712|1720 L0677 [ --aes

L0552 L2029 L0793 oo

EQUAL DIVISIONS AND COADITION 3 UF TARLE 8.1 PREVAILS

Croordinates Pressure, p }‘ll\lilr‘«ill'l‘l;j;lii; t Han i
! W, "
X Y N 'm N cim t K
o 9a fo.0252 10% 00365 10500 og01 10 Y 0 ntan 1 e S I
1 . 0235 0341 L036K L0145 (KT
tia L0197 286 L0300 Olls 2.7
15i 011y L0178 0201 [t a7
170 |0 0 L0107 0042 RYIRES
190 L0006 [IEXT0] P
21a L00R1 nn2 g AHE)
23a L0053 o 0N 42
250 0045 00k 0367
2T RUIEH nnte 0260
29a 0030 0014 N1
31a L0033 ol I
330 L6030 o1 02
350 L0024 L0011 Ofhit
3Ta . 0025 L0010 0Ty
39 L0023 L0009 0K
b {9 L0235 L1341 . 0386 L0152 1706
13b L0197 L0246 0353 01349 6.410
156 011y L0173 L0307 L0121 2048
17h 0 0 L0254 L0lnn 1.501
19b 0221 0087 Hidy
21bh 019K L0078 5700
23h L0180 L0071 3900
25b L0165 0065 2749
27h 0152 0060 2065
29h L0142 .NOSE
b 032 L0062
13h RUPE) 0044
35h o117 0046 TR
37h 0169 004y 0643
30h ] J } 0104 0ngl 0531

|

‘ !
047y |
|

|

f

= CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONCG THE

DIVIRED INTO TOUR
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TABLESJO.-CHARACTERHTKE(H‘THECOMPONENTSOFFTLM’HHCKNESSALUNU1ﬂh>hnnMAKnaAxn
o
: SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FIVE EQUAL DIVISIONS
.
2 AND CONDITION 3 OF TABLE 3. 1 PREVAILS
Coordinates Pressure, p Ratio Elastic detormation. w Ratio Total separation, S, w Ratio
< Y N ('mz psi R1 S cm in RZ :\ cm in. M3
2 Hb (113 10.1179-10%0.1704-10% 1.000 [0 8661 10-%] 0 4410 107 99.24 |0.4750- 1073 [0, 3445 1073 ] 0 jugy
4 133 | 1126 . 1633 . 8179 3220 14.58 . 8740 . 3441 1244
153 | .1021 . 1481 L7216 L2841 4.786 | . 8725 .3435 -.N6EY
173 | . 0839 1217 .5804 .2285 1981 | . 8733 .3433 L0088
192 | 0503 .0730 .3975 . 1565 K242 879y . 3464 1.617
218 |0 0 .2316 L0812 3220 9507 3743 ...l
23a L1755 . 0691 1749117y 4640 ..ol
253 { 1448 L0870 1085 1 1. 440 5825 [ eeen--
273 .9999 | L1242 . 0489 L0725 [ 1. 838 JT236 0 ool
293 . 1092 . 0430 051072, 24y 8855 | ...oo.
31a . 0975 . 0384 L0373 (2. 710 1067 ...
333 . 0884 . 0348 0262 {3.223 1.269 ...
35a . 0808 L0318 0218(3.785 1.490 ...
3T ‘ . 0744 . 0293 L0172 [ 4.392 1729 ...
39a 9998 | . 0688 L0271 .0134 [ 5. 050 1988 |--.._
413 . 0643 . 0253 G113 15,756 2.266 ...
43a . 0602 . 0237 L0093 |6.510 2.563 | ---.o-
454 \ . 0566 L0223 .007817.310 2,878 |eeoaoe
l 477 { .9997 | .0536 0211 L0066 | 8. 161 3.213 J-ellC
493 .9997 | L0508 L0200 0056 [9. 058 3.566  [......
136 | 113 | 1126 . 1633 1.000 | .8440 .3323 27.05 . 8753 .3446 2262
15b .1021 . 1481 1.000 | .7996 3144 10.50 . 8755 .3447 2836
17o . 0839 L1217 1.000 | .7330 2HK6 5.105 | 4766 .3451 4141
19b . 0503 .0730 .9999 | 6459 2543 2.767 | L4793 .3462 8447
21b 0 0 .9999 | 5525 2175 1.597 | . 8981 .3536  |.-.--.
23b .9998 | . 4925 1939 1,025 | 9731 3831 ..l
25b .9998 | . 4474 1763 L0201 1. 086 4275 ...
27b L9997 | 4117 1621 5036 [1.230 4841 ...
29b .9996 | 3814 1503 3742 | 1. 4n2 5519 ...
31b .9995 | 3559 1401 2659 | 1.601 6302 |oo...
33b 9994 | 3335 1313 L2235 (1. 425 N8 el
35b 9993 | 3137 1245 1781 2,075 1) & S N
37 .9992 | . 2962 1,66 1442 |2.350 9252 ...
39b 9991 | . 2804 1104 1184 ]2.649 o4z ...
41b .9990 | . 2664 1049 0984 12,972 S s S
43b .9988 | . 2535 L0998 L0427 (3. 320 T S DU
45b .9987 | 2414 . 0952 . 0702 3. 608 1452 1o
47 { J 9985 | 2311 L0810 L0600 | 4. 082 1.607 ...
49b 1 L9985 | 2212 L0871 L0517 {4.501 O & 2 SR,
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TABLE 3. 11,

- CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONG THE SEMIMAJOR AND

SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO THREE EQUAL DIVISIONS

AND CONDITION 4 OF TABLE 3.1 PREVAILS

mmnznvs Pressure, Rutio Flastic detormation, w Ratio Total separation, S - w | Ratio
U S — -

X Y N l'mz psi ”l S ont . ”2 : cm in. “3
o 1- ce 1Pl 1gme 1l P SRS sy k29 10-2 |0 aane 10-3] ¢ oo ]
ih o VLSS 1070, 1673 10 1. 0040 08068 10 0.33K1 10 35,42 0. 482910 0.3476-10 1.028

9a 1009 . 1463 L7262 L2654 3. 662 L HH21 d40n 1.135
11 L0623 L0907 . 4745 Lt o132 #9334 L3517 4. 033
132 |0 [0 2202 6T C2T05 {1034 . 4069 7.494
153 L1511 L0595 11261491 . HREG 4.994
172 L4999 1141 (465 onar[2orne HA20 4,353
19: LY999 | 097k 365 0351 |2, und | IR BT L R
21a B9y L NY36 0329 022513792 I 1 X
23a L9994 1 0782 13 0154 4. 34 1603 EEE
254 I L 990K 0654 02546 [RUN CONTINT o866 L.
274 T L NaET L0231 SIEFR N A 1 2 Hnl B
‘ 29 Rt RIHRR] L6210 ] 0061 L E 60 §o449 R
9b Ta . 1009 1463 1. 060 CTYTH 3141 " 4.205 g ddn2 1,267
11b . 0625 L0007 REL] CBTHG L2673 30210 Ho0H 1506 2 2H0
13b 0 0 L9049 IERE T L2104 l 1. 340 0132 R 2820
15h L0 RS L1779 HU66 11100 4432 2643
17h L9994 Ioaas2 L1556 ' AEI R E B B URS:TH RERKT 2,517
19 RRtA TR ’ FRERR] 1387 RIKES HHT 6641 .-
21h i HERE BN B} L1252 [ IR 145] SH220 .ol
23h WL 2as S1141 ' I RETE R toos L.
25h CUOEG 262 L1048 L0440 04u9 22 oo
27h RN 2401 L 0n6Yy “ T2 T L KT T [P
29h { HHES) RRE 0901 | TN 1,922
— s —— - SR -
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TABLE 3.12. - CHARACTERISTICS OF THE COMPONENTS OF FILM THICKNESS ALONG THE SEMIMAJOR AND
SEMIMINOR AXES WHEN THESE AXES ARE DIVIDED INTO FOUR EQUAL DIVISIONS

AND CONDITION 4 OF TABLE 3.1 PREVAILS

Coordinates Pressure, p R;mwA[—FI;;:(I_ﬁn;mu_nu; w Ratin T LW Ratio
X Y N cmz psi "1 ': cm in. "2 : y
- . U AN S P .
9 1oa fo.116m-10% 0. 1694 105] 1000 [0, 4664-107%] 0. 3411 1073 63 5 0o 1078 0 aaks 1077 [0, we0g
114 . 1000 1541 . 1922 L3119 9. 039 HT0G L3464 9549
13a L0014 L1326 6444 L2537 2,745 HKi 1465 i.260
154 . 0855 . 0805 . 4310 L1697 L0417 L ando RELT 3. 869
17a |0 0 L2286 . 0900 L3032 G822 BT U S (PR
194 [ 1661 L0654 CLATH L 20 AT feeeaos
2 | L1339 L0527 L0854 | 1,702 AT I
234 L9999 | L1130 L0445 L0542 (2,199 LU
253 . (9H3 . 03RT 036712 778 LT T I
27a . 0869 0342 L0260 13 432 Lant o [
29 0780 L0307 L0191 {4161 O T S I,
24 L9998 | L 0700 L0274 L0145 14 uky | ITY /A I
KEEY L0998 | 0650 0256 L0112 |5 K50 2.808 0 .ol
35a L9998 L0599 L0238 O0AS T E W 20680 [ aoos
¢ ATa R{HIN L0556 L0211y ONTT T widk S T
34 { 9997 | L0518 0204 0055 | 1. 946 RIS A .
tih | 9a 1060 1581 1. 000 HI19 4275 17 06 RHO . aeT L4433
131 nu14 1326 1. 000 CTB2H RRIHIRI foa1n Kl 3471 1162
150 L0855 L 0808 L9999 | 6612 L2603 2 94n b4 446 1. 855
17h 0 ] 09y n4T6 L2056 15 124 KRS B
1 | | | T Y Y bhs2 and 101y 4010
Lo | i Coawnt | 4260 1raf ST00GT 1T TR B
| 21 | | R R 1530 Faun |1 Rat 5455
f 250 | ‘ aYnh 504 1403 2TAY L 634 434 Cen
Lo2Th i ) G99 a202 1204 2065 L1 9 TR
| | ;4 | Ay b oanne o SRR nisto]
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TABLE 5.1. - EFFECT OF ELLIPTICITY PARAMETER ON

MINIMUM FILM THICKNESS

Ellipticity Minimum film thickness Difference between
parameter H and H
K " | Obtained from | Obtained from min D min’
¥
EHL point- least-square peréent
contact theory, fit,
l'lmln i;imin
1 3.367x10°% | 3.484x10°8 +2.88
1.25 4. 105 4.031 -1. 80
1.5 4. 565 4. 509 -1.22
1.75 4. 907 4.913 + 11
2 5. 255 5. 252 -.05
2.5 5. 755 5.781 +. 45
3 6.091 6. 156 +1,08
4 6.636 6.613 -. 34
8 6. 969 6. 961 - 12
8 7.048 7.050 +.02

TAELE 5.2. - EFFECT OF DIMENSIONLESS SPEED

PARAMETER ON MINIMUM FILM THICKNESS

Dimensionless Minimum film thickness Difference bgtween
apee:lt::'ram Obtained from | Ubtained from Hm‘" ;':l Hmm,
u EHL point- least-square percent
contact theory, ~m,
l'lmln Hmln
0.08416x1071 | 3.026x10"® | 3.915x1078 -0.275
. 1683 6. 156 6.252 +1. 564
. 2825 8.372 8.223 -1.780
. 33687 9. 995 9.987 -.078
. 4208 11,61 11.61 -. 004
. 5892 14,39 14. 57 +1, 280
. 8416 18. 34 18. 54 +1.104
1.263 24. 47 24.39 -. 320
1.683 29.75 29. 61 -. 467
2. 104 34.58 4.4 -. 432
2.528 39.73 38.95 -1.977
2.946 4. 47 43. 22 -.57¢
3.367 47.32 47. 30 -. 042
4.208 54. 57 54. 99 +. 768
5.050 61.32 62.20 +1. 430

TABLE 5. 3. - EFFECT OF DIMENSIONLESS LOAD PARAMETER

ON MINIMUM FILM THICKNESS

Dimensionless Minimum f{{lm thickness NMiference bgt\vun
load param- H and H
.::, Obtained from | Obtained from min D mip’
» L]
w EHL point- least-square per:ent
contact theory, ~m,
Hpin Hoin

0.1108x10°% | 6.989x10° | 6.041x107® -0.41
L3311 6. 492 8. 509 +1.6%
. 3686 6.317 8. 358 +.64
. 5528 6.268 6. 172 -1.82
L1 6. 156 6. 044 -1.8¢
L9214 6.085 5. 947 -2.27
1. 108 8. 811 5. 868 +. 98
1.290 8, 657 5, 803 +2.58

.
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’ sf # TABLE 5.4. - EFFECT OF SOLI") MATERIAL AND L UBRICANT AS REPRESENTED IN DIMENSIONLESS
MATERI/L PARAMETER ON MINIMUM FILM THICKNESS
E Solid ma- | Lubricant | Di ionl m {onl Di {on) Minimum filin thickness Difference bﬁtween
terial terial pa- | ipeed param- | load param- H and H
* materiét p peec P P Obtained from | Obtained from | ™0 D min’
rameter, eter, eter, 1
G v w EHL point- least-square percent
contact theory, fit,
Honin Hnin
Bronze | bwiaifinic 2310 0.3206x10" 11 | 0.7216x10°% | 6.931x108 | 6.873x1078 -0.84
Bronze Naphthenic 3581 . 9422 L1218 17.19 17. 404 +1.25
Steel Paraffinic 4522 . 1683 . 3686 6.317 6.338 + 31
Silicon Paraffinic 6788 . 1122 . 2456 6.080 8.038 -.70
nitride

TABLE 5.5. - DATA SHOWING EFFECT OF ELLIPTICITY, LOAD, SPEED, AND MATERIAL ON MINIMUM F11.M THICKNESS

Case | Ellipticity | Dt fon} Dimension} Dimensionless Minimum film thickness Dilference between| Results
parameter,( load param- | speed param- | material pa- Hmln and ﬁmln’
X eter, eter, meter, Obtatned from | Obtajned from Dl'
w U G EHL point- least-square percent
contact theory, Ln,
Hmln Hmm
1 1 0.1106x10°% | 0, 1683x10"!! 4522 3.36710°% | 3.514x1078 +4.31
3 .28 4. 105 4.078 -.66
3 1.8 4. 585 4.554 - 24
4 1.7% 4. 907 4.955 +.98
L] 2 5.255 5.204 +.74 Ellipticity
] 2.5 5. 755 5. 821 +1.15
7 3 8.091 8. 196 +1.72
L} 4 8.63¢8 6.652 +. 24
9 [} 6.969 7.000 +. 46 J
10 ] 7.048 T.091 .. 81
11 [} . 2211 6. 492 6.658 +2.5,
12 .60 6. 317 8.412 +1.50
13 . 5828 6. 268 6.228 -.69 Load plus
14 L1373 6. 156 6.095 - 99 case 9
13 9214 6.085 5.097 -1.45
18 1. 108 5. 811 5,018 +1. 84
17 1.290 5.857 5. 851 +3.43 4
18 .13 .08416 3.926 3. 805 -3.00
19 . 3538 8.372 8.032 -4.08
0 . 3367 9.995 9.769 -3.2¢
al . 4208 11.61 1137 -3n
2 . 5892 4.3 14.29 -.89
3 .18 18. 34 18.21 -n Speed plus
u 1.26 M 24.00 1.9 " case 14
23 1.68) 29.15 9. 18 -1.902
2 2.104 34.58 33. 96 - 19
n 3.928 8.7 8. 44 -3.25
1) .06 4.4 42,69 -1.1
b 3. 3617 1.3 48.76 -1 18
) 4.200 84. 87 4. 41 - %
n 8. 080 61,32 81.59 .. 44 J
2 1210 , 3298 2310 6. 931 6. 938 « 10 Materials
] .1216 . 9422 M 17. 19 17. 59 +3.93 plus
M 1458 . 1122 6708 8. 080 6. 116 +. 8 case 9

Rl ekl ant

Ty oY




TABLE 5.6. - EFFECT OF ELLIPTICITY PARAMETER

ON CENTRAL FILM THICKNESS

Ellipticity Central film thickness Difference between
parameter, H_ and H ,
k Obtained from | Outained from ¢ D,, ¢
EHL point- least-square perczent
contact theory, fit,
H, H,
1 6.860x10® | g 13p.10°6 -10. 52
1.25 6. 964 6. 565 -5, 73
1.5 7.001 6.921 ~1. 14
.75 7.015 7.218 +2. 85
2 7. 402 7.465 +. 85
2.8 7.853 7. 841 +2. 46
3 7. 845 8.102 +3.28
4 8.292 8. 408 +1. 40
(] 8.6857 8.625 - N
8 8.672 8.675 +.03

TABLE 5.7. - EFFECT OF DIMENSIONLESS SPEED

PARAMETER ON CENTRAL FILM THICKNESS

Dimensionless CrntraiTll;;hl(‘kncss Difference between
Bpeed param- [T T e o Hc and }Nic,
eter, Obtatned from | Obtained from D,,
U EHL point- least-square petcent
contact theory, Ql,
Hc "c
0.08416x10"!1 | 4 917.106 | 4 720.50°6 -4.00
. 1683 7.517 7. 495 -.29
. 2525 9.999 9. 825 -1.74
. 33687 11. 40 11.91 +4. 47
. 4208 13.07 13.81 +5. 66
. 5892 17.13 17.29 +. 83
. 8416 21.35 21. 94 +2.76
1.263 24.62 28.76 i -2.80
1.683 35,50 | 34. 83 [ -1. 89
2.104 41.05 40, 42 , -1.51
2.525 46.64 45. 66 -2.10
2. 946 51.08 30.61 -.92
3. 387 55. 56 §5. 33 -. 41
4.208 63. 81 64. 20 +. 61
5.050 71.25 | 72.51 W17

TABLE 5.8, - EFFECT OF DIMENSIONLESS LOAD PARAMETERS

ON CENTRAL FILM THICKNENS

[Ulnwnnmnn 313 » L'.-mr.:[.l’nlm thickness ’ Ditte n-uZ‘r h«;lw.'tﬂyn ]y
load param- b N * H‘, and ML i
oter, Obtained fron :()hunu A trong ' D, ‘
' 2
W ‘ EHL pont ¢ least-nquare | percent
{ ! vontaet theory, fit, ; ]
j i llr HC 4 I
- PR S R e o . — ]
f . -6 s -6 ; - o :
0. 1006 - 10 s 863710 CB 42410 2.6y :
La 7. 796 7990 2.4y
. 3686 7005 7.7 ' +2. 88
' . 3528 7,309 7512 Lt
JT8T8 7.7 17468 -1 ul
N i f
L9214 P1.611 T.258 ; -4. 63
1. 106 LT 41 | 7170 382
1. 290 |6 762 © 7096 | o494
—— l - — B - I - [

e e i




TABLE 5.9. - SFFECT OF SOLID MATERIAL AND LUBRICANT AS REPRESENTED IN DIMENSIONLESS

MATERIAL PARAMETER ON MINIMUM FILM THICKNESS

104

Sulid ma- | Lubricant | Dimensionless Dimensionless | Dimensionless Central film ‘“ickness Difference between
terial material pa- | apeed param- | load param- - " . Hc and Ec'
rameter, eter, ~ter, Obtained from |Obtained from DZ'
G It w EHL point- least square percent
contact theory, I,
H, He
Bronze | Paraffinic 2310 0.3206x107 11 | 0.7216-1076 8.422 1075 | 8 226.10°6 -2.23
Bronze Naphthenic 3591 . 9422 L7216 20.70 20.99 +1.40
Steel Paraftinic 4522 . 1683 . 3686 7.505 7.818 +4. 18
Silicon Paraffinic 8785 L1122 . 2456 7.825 7. 585 -3.07
nitride 1
TABLE §. 10. - DATA SHOWING EFFECT OF ELLIPTICITY, LOAD, SPEED, AND MATERIAL ON CENTRAL FILM THICKNESS
Case | Ellipticity | Dt ionl D ion] Dimension} Central film thiccness Difference between Results
parameter, | load param- | speed param- | material pa- H_  and ‘ﬁ .
k eter, eter, rameter, Obtained from | Obtained from € DZ' ¢
w u G EHL point- least-square percent
contact theory, IE,
H, H,
1 1 0.1106x30°% [0.1683x10"!! | 4532 6.86010°% | 6.215-10° -9.40 Y
2 .28 6. 964 6. 647 -4, 55
3 1.8 7.001 1. 008 +.07
4 .18 71.015 1.308 +4. 15
L] 2 7. 402 T.5%8 +2.08 MElpticity
] 3.3 7.653 7.937 +3.1
7 3 7. 845 8.202 +4. 55
[ ] 4 8.292 8513 +3.87
9 [} 8.857 4.738 +. 01
10 s 8.672 8.787 1.3 <
1 [} .aa11 T.796 8.339 +8. 87
12 . 3808 7.505 8. 059 +T.38
1 . 8828 1. 300 . 843 +7.04
1 1am 1.8 7.693 .34 vad plus
1 9214 7.611 1,578 -4 case §
18 1. 106 T. 416 1.487 +. 96
17 1.290 8.762 7. 410 +9. 50
18 L1311 .08418 4.917 4. 0% ~-1.68
19 . 3528 $.999 16. 10 +1.01
0 . 3387 1140 13. 24 1.0
ki . 4208 13.07 14.28 +8. 712
22 . 5892 1. 13 178 +3.97
L] . 8418 21.35 22.81 +5,90
H{] 1.263 .62 29.60 +. 20 Speed plus
25 1.60 35. 50 35. 98 +«1.3% ’ cane 14
i 2. 104 41.0% 4179 1. 80
a1 2,828 48,84 41.22 +1.24
28 1. 048 s1.00 32.36 +2.51
n 3.387 35.38 87.26 +3.08
0 4.208 63. 01 68. 49 +4. 20
1) 5.0%0 1.3 7813 +5. 45 .
3 L1316 . 3208 310 8. 422 8. 488 +. 52 Materials
k3] 1218 . 9422 3581 0.1 21.82 od. 44 } plus
p 1} . 3458 . 1132 6188 1.82% 7. 825 0 case §




TABLE 6.1. - EFEECT OF STARVATION ON MINIMUM

FILM THICKNESS FOR THREE GROUPS OF THE

DIMENSIONLESS SPEED AND LOAD PARAMETERS

Dimension- Group
less inlet ]
distance, ! 2 3
m Dimensionless load piarameter, W
0.3686- 106 | 0.7371-1076 | o 7371107
Dimensionless speed parameter, U
0.1643- 107 ] 1 ang 1071 | 5 g50. 1071
Muntmum film thickness, “nnn
[ R 20751070 | g1 g gp78
a 3171078 | 20 0g 57,50
3 4.261 27.84 51,70
2.5 [ eeeeaiaaal 26, 48 W HY
2 5,997 23. 46 9. 91
. | S T 21.02 14.61
1.5 5.236 - 27.90
1.25 3.945 feeeeeeo [ Ll
TABLE R.2. « EFFECT OF DIMENSIONLESS SPEFD AND LOAD PARAMETERS ON
DIMENSIONLESS INLET DISTANCE AT FULLY FLOODED - STARVED BOUNDARY
Group| Dimension- | Dinension- Dumension- | Fully flooded | Fully fooded Dimension-
L]
lens speed less load less radius | central film nunimnum less inlet
Parameter, |parameter, parameter, | thickhiess film thick - distance at
- U w l(‘ b H(. b ness, tully flooded -

“nnn, ¥

starved
boundary

me*

1o s 107 o mmas 1075 | 205y 7o | g angh 2.62

2 1.683 LT3 1635 ER RS 29,20 3.71

3 5.050 7371 164, 5 T0.67 60 Y2 57
TABLE 6.3. - EFFECT OF DIMENSIONLESS INLET ISTANCE ON DIMENSIONLESS

CENTRAL FILM THICKNESS RATIOS

Group| Dimension- | Ratio of central | Rutio of minimum | Ilet boundary | Inlet boundary
less inlet | film thicknesses| Glm thicknesses paraieter, parameter of
distance, | for starved and | for starved and tm - botm* - ) Wedeven, et al

m tlooded condi- | flooded conditions, (1974,
tions, "mxn,S ”mm, ¥ tm o« 1) (my - 1)
"c,S o, F
1 2.62 1 i 13 09495
. ’ 2 9430 9640 5173 6108
3 1.8 697 B417 3086 3054
1.25 . J89 B34 1343 L1527
2 an T w_w"__l-" ’ T T L8281}
3 L9974 9334 7380 6111
2.5 3870 LB034 3539 4944
2 17705 . B034 J690 3054
1.7% 7151 Rt 278 2292
3 5.57 v T I T ryrv
4 9348 L9448y 6365 3579
R} 8130 447 4376 374
2.5 7440 Y7 RELN 2189
2 L8223 68591 2184 1880
.13 . 3309 inl 1641 1395
I 4155 sy 104 Y30

T Wy
.
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{a) Martin conditions; rigid solids and
Isoviscous lubric.nt,

h
e, U
He R U)w
X D

(D} Hertzian conditiors.

elastic solids and dry
contact,

.

A1
I

L

ﬁ-hmm

——e

(c) Elastohydradynamic conditions. elastic solids and
Newtonian tubricant,

Pmin . La 00007
R, w13

Hmin I

Figure L L - Lubrication and contact conditiony ang
minimam flm-thickness for mulgs,
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Figure 2, 1. - Geometry of contacting elastic solids,

\a-1)y = 0 Plane. (3-2) x = 0 Plane,
(2) Two different ell psoidal solids.
Figure 2.2. - Equivalent eflipsoidal solids.

{b-1}y = 0 Plane, (b-2) x = 0 Plane.
(b) Equivalent eflipsoidal solid near a piane,
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(b) Locat elastic defor mation,

Figure 3, 1. - Types of e'astic deformation,

Y

Figure 3.2, - Elastic defor mation of a semi-infinite body

subjected to a uniform pressure over a rectanquiar
area,
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Fiqure 3.3, - Example division of area in and around contact
zone into equal rectangular areas,
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W,

\Ma - Wg)
9

Ratio Ry - 100(

110

80—

1.2

6.4/

5.6

48—

4.0

32—

24— ——— Ry - 1.284cm R, - 15.00cm
Ry = 0.5558 cm, Ry = 0.5558 cm

| | 1 | | | | | | J
0 .2 .4a .63 .8 a 1.23 1.43 1.6¢ .88 2.08
Coordinate y

(a) Semimajor axis.

5.6r—

| I | | I | l | [
0 o) .4h . 6h & h 1% 1.4h 1.6b 1 8 ?.0b
Coordinate x

(b Semimingr axis
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Figure 4.3, - Mesh used in numerical analysis.
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#




117

Input
N
s : Calculate 1,1 2,7,k a, b
3 ¥ R
?
‘ Go to
SUB6
| Calculate # and p by using egs. 4.16) and (4.13)
3 |

Calculate Ai,j‘ Bl.j' CL}', Di, j' Li,j' and M‘.J
. by using egs. (4, 49) to (4. 55)
- P: . | -
, PLion"Pijna [
No Calculate 0“_ n+1 by using eq. (4.59)
Is
F‘ pressure =%
f loop P, ne1 O, nethij
; converg- -
K od?
:
Hr
Yes
Calculate F by L [Caiciate 7, by usin 65) I P
using eq. (4.63) Hy by using eq. @. MJ

} Figure 4 6. - Flow chart of main program,

Calculate P,_,— initially
by using eq, (4 51

|

Calculate Dy
by using eq. (4 22

1

entering
use?

Calcu late ”i,; by using eq. (4 20

] 72 |
O j.nPi M

Figure 4 7. - Flow chart of subroutine SUBS.
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{a) Contour plot of dimensioniess prassure.

Figure 5.2. - Cantour piots of dimensioniess pressure and film thickness and three-dimensional representation of pressure for
ellipticity parameter &) of 8. The dimensioniess parametors U, W, and G are heid constant as defined in equation (5,100
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(a) Contour plot of dimensionless pressure. o

Figure 5.3. - Contour plots of dimensionless prassure and film thickness and three-dimensional representation ’

of pressure for eilipticity parameter ) of 6. The dimensionless parameters U, W, and G are held constantas

defined in equation (5.10). ;
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{b) Contour piot of dimensionless film thickness.
Figure 5.3, - Continued.
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{a) Contour plot of dimensionless pressure.

Figure 5.4, - Contour plots of dimensionless pressure and film thickness and three-dimensional rep-esentation of pres-

sure for ellipticity parameter (k) of 4. The dimensionless parameters U, W, and G are held cor “tar as defined in equa-
tion .10
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(a) Contour plot of dimenslonless pressure.
Figure 5.5, - Contour plots of dimensionless pressure and film thickness and three-dimensional repre-

sentation of pressure for ellipticity paramete
held constant as defined In squation (5. 10).
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(b) Contour piv. of dimenslonless film thickness,
Figure 5.5. - Continued,
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Figure 5.6. - Contour plots of dimensionless pressure and film thickness and three-dimensicnal repre
sentation of pressyre for ellipticity parameter (k) of 2.5, The dimensionless parameters 1! W, and G
are held constant as defined in equation (5. 101,
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Figure 5.7. - Contour plots of dimens Jniess pressurd and fiim thickness and three dimensiona!

representation of pressure for ellipticly parameter &) of 2. The dimensioniess parameters U, W,
d G ars held constant as defined in oquation (5. 101,
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Figure 5.8. - Contour plots of dimensionless pressure and flim thickness and three-dimensional

representation of pressure for ellipticity parameter ) of 1.75. The dimensioniess parameters
U, W, and G are heid constant as defined in equation (5. 10),
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{b) Contour plot of dimensionless film thickness.

Figure 5.8. - Continued.
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(c) Three-dimensional representation of pressure.

Figure 5.8. - Concluded.
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Figure 5.9. - Contour plots of dimensioniess pressure and film thickness and three-dimensional repre-
sentation of pressure for ellipticity parameter (k) of 1.5. The dimensionless parameters U, W, and G
are held constant as defined in equation (5.10).
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{c) Mree-dimensional representation of Hessuty,
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(#) Contour plot of dimensioniess pressure.

Figure 5.10. - Contour plots of dimensionless pressure and fiim thickness and three-dimensional
representation of pressure for ellipticiy parameter (k) of 1.25, The dimensionless parameters Uy,

W, and G are heid constant as defined in equation (5.10)
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¢ (b} Contour piot ot dimensionless film thickness.
Figure 5.10, - Continyed.
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Figure 5.11. - variation of dimensionless pressyre and film thickness on X- axjs
for three values of ellipticity parameter. The value of Y is heid fixed near axial
center of contact,
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{a) Contour plot of dimensionless pressure

. Fiqure 5.12. - Confour plots of dimensionless pressure ang film thickness and three-dimensional representation of pres

iy sure for dimensioniess speed parameter (U) of 5.050c10° !, The dimensionless parameters k, W, and G are held con-
stant as defined in equation ©.18).
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Dimensionless
pressure,

() Contour plot of dimensioniass pressure.

Figure 5.13, - Contour plots of dimensionless pressure and fll{r_\ thickne.s and three-dimensional representation of
pressure for dimensionless speed parameter (U) of 4, 208x10™13, The dimensionless parameters K, W, and & are
held constant as defined in equation (5. 18).
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Figure 5.13. - Continued.
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(a) Contour plot of dimensionless pressure,

Figure 5.14. - Contour plots of dimensioniess pressure and fil th ickness and three-dimensional representation of
pressure for dimensioniess speed parameter (U) of 3. 367x10 1L, The dimensionless parameters k, W, and G are
held constant as defined in equation (5. 18),
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(b) Contour piot of dimenslonless film thickness.
Figure 5.14. - Continued.
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(a) Contour plot of dimensionless pressure.

Figure 5.15. - Contour plots of dimensionless pressure and film timlckness and three-dimensional representation

of pressure for dimensionless speed parameter (U) of 2, wex10’!
are held constant as defined In equation (5. 18),
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(€) Three-dimensior 4l representation of pressure,

‘ Figure 5.15. - Concluded.
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(a) Contour plot of dimensionless pressure,

Figure 5,16. - Contour plots of dimensionless pressure and film fil ickness and three-dimensional representation
of pressure for dimensionless speed parameter (U) of 2, 525x107} . The dimensionless constants k W and G
are held constant as defined in equation (5, 18),
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(2} Contour plot of dimensionless pressure.

Figure 5.18. - Contour plots of dimensionless pressure and fiim thlckraelss and three-dimensional represgn-
tation of pressure for dimensionless speed parameter (U} of 1,680 1!, The dimensionless parameters k,
W, and G are held constant as defined in equation (5,18).
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{b) Contour plot of dimensionless film thickness.
Figure 5.18. - Continued.
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Figure 5.18. - Concluded.
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Figure 5.19. - Contouir plots of dimensionless pressure ard film thickness 1nd three-dimensional repre-
sentation of pressu:-2 for dimensionless speed paramater (U) of 1, 263x10711,
eters k, W, and G are held constant as defined In equation (.18).
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(b) Contour plot of dimensionless film thickness,

Figure 5.19. - Continued,
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{a) Contour plot of dimensionless pressure.

Figure 5.20. - Contour plots of dimensioniess pressure and film thickness and V{)!ee»dimensional
representation of pressure for dimensionless speed parameter (U) of R.416x10 14, The dimension-
tess parameters k, W, and G are held constant as defined by equation &.18).
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Fisure 5.21. - Contour plots of dimensionless pressure and film thickness and three-dimensional representation of pres-
sure for dimensionless speed parameter (U) of 5, 892:10'12. The dimensiontess parameters ¥, W, and G are held con-
stant as defined in equation (5, 18),
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Figure 5. 24. - Contour plots of dimensionless pressure and fiim nﬁckness and three-dimensional rep-
resentation of pressure for dimensionless speed (U) of 2.525x10°12. The dimensiorless parameters
k. W, and G are held constant as defined in equation (5.18),
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(a) Contour plot of dimensionless pressure.

Figure 5.25, - Contour plots of dimensionless pressure and film thickness and i ree-dimensional
representation of pressure for dimensionless speed parameter (U) of }, 8X10°*¢, The diman-
slonless parameters k, W, and G are held constant as defined in equation (5. 18),
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Fige-2 5. 26 - Contour plots of dimensioniess pressure and film thickness agd three-dimensional rep-

resenintion of pressure for dimensioniess speat perameter W) of . 416u10°'”. T™he dimensioniess
parameters &, W, 3nd G are heid constant as defined in equation 8. 18).
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Flgure 5.27. - Variation of dimensionless pressure and film thickness on X-axis
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(a) Contour plot of dimensionless pressure.

Fiqure 5.28, - Contour piots of dimensionless pressure and flim
of pressura for dimenslonless losd parameter W) of 0. 1106x10"
are held constant as defined in equation (5. 23),
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(b} Contour plot of dimensionless h'm thickness.
Figure 5.29. - Continusd.
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(a) Contour plot of dimenslonless pressure.

Figure 5. 0. - Contour plots o¢ dimensioniess pressura and film thickness and three-dimansional representation
of pressure for dimensioniess load perameter (W) o/ 0. %6107, The dimensioniess parameters k, U, and G
are held constant as defined in equation (5. 23).
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Figure 5. 30. - Continued,
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(2) Contour plot of dimensionless pressure.

Figure 5. 31. - Contour plots of dimensionless pressure and film thickness ard three-dimensional
representation of pressure for d.mensionless load parameter (W) of 0.552x11°°, The dimension-
less parameters k, U, and G are heid constant as defined in squation (5, 23),
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Figure 5. 33, - Contour plots of dimensionless pressure and fiim thickness and three-dimensional
representation of pressure for dimersionless load parameter (W) of 0.9214x10°%, The dimension-
less parameters k, U, and G are held constant as defined in equation (5. 23),
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Figure 6.3, - Contour plots of dimensionless pressure and dimensionless fitm thickness for dimensionless Infet
distance m of 4 and group 1 of table 6.2.
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Figure 6.4, - Contour plots of dimensionless pressure and dimensionless film thickness for dimensionless inlet

distance m of 3 and group 1 of table 6.2,
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Figure 6.6. - Contour plots of dimensioniess pressure and dimenslonless film thickness for dimen-

slonless Inlet distance n of 1.5 and group 1 of table 6. 2.

s s

225




226

HehiRy

film thickness,
5.4010°6

Dimensionless

RO i L A S b

5.7
6.1
6.6
1.2
8.0
9.0

WO wuOT

e Bpn e et L sk s E i 4 LA b

{b) Dimensionless film thickness.
Figure 6. 6. - Concluded,




227

Dimensionless
pressure,
Pep/t

e
— et s
o e~

sazss

TOMMOO®D™™
—
o

i
1
{
i
|

1
=

(2) Dimensionless pressure,

Figure 6.7. - Zontour plots ¢ ‘imensioniess pressure and dimensionless fiim thickness
ior dimensioniess inlet distance m of 1. 25 and group 1 of table 6. 2.




228

. 1
1
L. ]
;
Dimensionless
film thickness, N
HehiR, i
A aoa0t :
'‘BRY’ I
C 45
D 4.9
3 5.4
F &0
. 4 68
. H 18
‘
|
3 ) .' \\\‘ ‘.\\.
h Yo T T e ) J @Q\.‘\\\"\‘~
3 ' j '\ \\"\ )
: A NN
F b RN YA \ P
p . ! R RN
: R
\ RSN
| x - v /// /o
; - B TSy
3 s
3 .
]
]
(b) Dimensionless film thickness.
Flgure 6.7. - Concluded.
i

Slg o 2




229

Dimensionless
pressure,
Peplp

1801073
6

— et s

W OO~ W

A
B
c
0
E
F
6
L}

I
I |
l//I)/ I/J /J ;'J //

. \ \\\ Lo ////;7///, re! -.
\\ -'t\ AN B -'.

(3) Dimensionless pressure,

Figure 6.8. - Contour plots of dimensionless pressure and dimensionless film thickness for dimensiontess
inlet distance m of 6 and group 2 of table 6. 2.
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(3} Dimansioniess pressure,

Figure 6. 9. - Contour piets of dimensionless pressure and dimensisnless film thickness br dimensionless
inlet distance m of 4 and group 2 of table &. 2.
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(b} Dimensioniess film thickness,
Figure 6.9. - Concluded.
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Figure 6.10. - Contour plots of dimensionless pressure and dimensionless fitm thickness for dimension-

less iniet distance m of 3 and group 2 of table 6, 2.
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(b) Dimensionless film thickness.
Figure 6,10, - Concluded.
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(b} Dimanslonless film thickness,
Figure 6.11. - Concluded.
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Figure 6.12. - Contour piots of dimenslonless pressure and dimensionless film thickness for dimen-
slonless inlet distance m of 2 and group 2 of table 6, 2.
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{a) Dimensionless pressure,

Figure 6,13, - Contour plots of dimensioniess pressure and dimensionless fitm thickness for dimensioniess inlet dis-
tance m of 6 and group 3 of table 6. 2.
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(b} Dimensioniess film thickness.
Figure 6.13. - Concluded,

L]

ﬂ,
Pl

P

1




Dimensionless
pressure,
P = piE'

A
8
C
D
E
F
G
H

S

=
L]
-

(a) Dimensionless pressure.

Figure 6,14, - Confour plots of dimensionless pressure and dimension'ess fitm thickness for dimensionless Inlet dis-
tance m of 4 and group 3 of table 6.2,
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(b) Dimensioniess Alim thickness.
Figure 6.14, - Concluded.
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Figure 6,15. - Contour plots of dimensionless pressure and dimensioniess film thickness for dimensionless injet
distance m of 3and group 3 of table ¢, 2.
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Figure 6.15, - Conchded.
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(3} Dimensionless pressurs,

Figure 6.16. - Contour plots of dimensiontess pressure and dimensioniess flim
inlet distance m of 2.5 and group 3 of table 6.2,
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Figure 6,16, - Concluded.
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Figure 6.17. - Contour plots of dimenslonless pressure and dimer.slonless film thickness for dimen-
sionless inlet distance m of 2 and group 3 of table 6.2,
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Figure 6.17. - Concluded.

248




249

Dimensioniess
pressure,
P =piE'

1.8x10°73

-
"

rommoowm»
.\uo«o'-‘who

(a) Dimensionless pressure.

Figure 6.18. - Contour plots of dimensionless prassure and dimensioniess film thickness for di-
mensionless Inlet distance m of 1.75 and group 3 of table 6. 2.
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Figure 6.18. - Concluded.
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(a) Dimensionless pressure.

Figure 6.19. - Contour plots of dimensionless pressure and dimensionless film thickness for
dimenslonless Iniet distance m of 1.5 and group 3o/ table 6. 2,
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Figure 6.20. - Effect of dimensionless inlet distan
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The value of Y is held fixed near the axis of symmetry of the
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(a) Group 1 of table 6. 2.

Figure 6.2, - Effect of dimensionless inlet distance on dimensionless film thick-
ness along X-axis, The value of Y is held fixed near the axis of symmetry of
the contact.
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Figure 6.21. - Concluded.




